
ON THE COVER
7 Leveraging ReportSmith: Part I — Mark Ostroff
ReportSmith is a robust reporting tool that allows you to build powerful,
complex reports featuring graphs, crosstabs, drill-downs, live data pivot-
ing, etc. Mr Ostroff begins a two-part series that discusses when and how
to use ReportSmith in your Delphi development.

15 QuickReport — Cary Jensen, Ph.D.
If you don’t need ReportSmith’s full-fledged capabilities in your applica-
tion, QuickReport is probably a better tool for your reporting needs. Dr
Jensen builds a basic QuickReport report, covers report previewing and
printing, data module usage, and examines bands.

20 ReportSmith Secrets — Jeff Sims
Does ReportSmith have you puzzled? Mr Sims shares straight talk
regarding some common misperceptions about Borland’s misunderstood
reporting tool. He also reveals a number of secrets to help you put the
power of ReportSmith to work in your Delphi application.

FEATURES
24 Informant Spotlight — Gregory Lee
What’s old is new again. Although roughly 25 years old, today’s tech-
nologies make the Internet the hot new thing. To get you connected, Mr
Lee introduces DelphiFinger, a Finger utility that just happens to
demonstrate adding Winsock capability to Delphi applications.

32 OP Tech — Keith Wood
Continuing his TLabelEffect discussion from our July ’96 DI, Mr Wood
returns to teach another lesson in extensibility. Step-by-step, you’ll learn to
build prototype and finished property editors for the EffectStyle and
ColourScheme properties, as well as give TLabelEffect its own Help file.

39 From the Palette — Karl Thompson
Just drop a DirectoryListBox, FileListBox, DriveComboBox, or
FilterComboBox on your Delphi form for navigation capabilities. But if you
want more functionality, Mr Thompson shows you how to enhance these
controls as he builds on his Table Documentor tool from the March ’96 DI.

REVIEWS
44 Borland Pascal 7 Insider — Book Review by James Callan
44 Mastering Delphi 2 — Book Review by Larry Clark

46 Ace Reporter — Product Review by Bill Todd

DEPARTMENTS
2 Delphi Tools
5 Newsline
50 File | New by Richard Wagner

1 August 1996 Delphi Informant

Cover Art By: Tom McKeith

August 1996, Volume 2, Number 8

Delphi Reports
ReportSmith, QuickReport, and Beyond

2 August 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Peter Norton’s Guide to Delphi 2

Peter Norton, John Mueller
SAMS

ISBN: 0-672-30898-3
Price: US$49.99
(788 pages, CD-ROM)
Phone: (800) 428-5331
Digital Metaphors Releases Piparti 1.0 Report VCL for Delphi

Digital Metaphors of

Dallas, TX announced the
release of Piparti 1.0, a
report VCL for Delphi.
Written in Object Pascal,
Piparti is a VCL compo-
nent that includes an inter-
active Report Designer.

When installed, Piparti
adds two components to
Delphi’s Component
Palette, TppReport and
TppViewer. Reports are cre-
ated by dropping a
TppReport component onto
a form and double-clicking.
This invokes the Report
Designer, which can be
used to visually design and
preview reports.

Working like Delphi’s
Form Designer, the Report
Designer supports multi-
selection, cut-and-paste
operations, undelete, con-
trol sizing, and positioning.
Additionally, several Report
Designer tools augment the
standard Delphi Object
Inspector, and provide
access to report control
properties. These include
the Format Toolbar,
Alignment Palette, Color
Palette, and various Speed
Menus.

Piparti also allows devel-
opers to preview reports at
design time through a
built-in print preview form.
After a report has been ren-
dered, the previewer can see
the design layout changes
without running the report
again. The previewer pro-
vides standard Zoom and
Print functions, and has a
caching scheme that allows
users to view or print any
page in the report. The
Print Preview feature can
be customized for the run-
time environment.
TppViewer is a print pre-
view component that assists
developers in customizing
reports.

Additionally, Piparti sup-
ports data access through
Delphi’s standard
TDataSource component.
Report controls include:
ppLabel, ppMemo, ppCalc,
ppImage, ppShape, ppLine,
ppDBText, ppDBMemo,
ppDBCalc, and ppDBImage.
Control Groups and
Title/Summary bands are
also supported. Piparti 1.0 is
available in both 16- and 32-
bit versions. A demonstration
copy is available at Digital
Metaphor’s Web site.

Price: US$199 (US$149 introductory
price), plus shipping and handling
Contact: Digital Metaphors, Infomart,
1950 Stemmons, Suite 5001, Dallas,
TX 75207
Phone: (214) 746-4703
Fax: (214) 746-4704
E-Mail: Internet: info@digital-
metaphors.com
Web Site: http://www.digital-
metaphors.com
Eagle Research Links Delphi 2 to Access with JETset

Eagle Research, Inc. of

San Francisco, CA has
begun shipping JETset, a
tool that connects Delphi 2
to Access through
Microsoft’s JET database
engine. JETset supports
Access database features
such as transactions, stored
queries, reporting, macros,
database repair, verification,
and replication. JETset also
supports JET’s use of exter-
nal data sources such as
Excel and Lotus spread-
sheets, Btrieve and FoxPro
databases, and text files.
With JETset, programmers

can deploy Delphi applica-
tions that use Access with-
out having to ship the
Borland Database Engine.

According to Eagle
Research, JETset’s design-
time interface can be used
to make any Delphi com-
ponent. JETset for Delphi
requires Microsoft JET ver-
sion 3.0. JET 3.0 and its
documentation are includ-
ed in current versions of
Microsoft Visual C++,
Visual Basic, and Access.

Price: US$150, includes a 30-day
money-back guarantee, and no distri-
bution royalties. JETset is also bundled
at no charge with the professional edi-
tion of Eagle’s VB2D Visual Basic to
Delphi translator (US$450).
Contact: Eagle Research, Inc., 360
Ritch Street, Ste. 300, San Francisco,
CA 94107
Phone: (415) 495-3136
Fax: (415) 495-3638
E-Mail: Internet: sales@xeaglex.com
Web Site: http://www.xeaglex.com

3 August 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi Database Development
Ted Blue, et al.

M&T Books

ISBN: 1-55851-469-4
Price: US$44.95
(968 pages, CD-ROM)
Phone: (800) 488-5233
Nutshell Software of
Westlake Village, CA has
released IM/EX ASCII, an
import/export tool for
Delphi. IM/EX ASCII
exports ASCII data to and
from Paradox or dBASE with
one line of code. It is designed
to support 82 percent of
ASCII files, including variable
length formats with comma
or custom delimiters.

In addition, IM/EX
ASCII supports use of
Memo or large text fields.
It can also double the speed
of ASCII operations by
exporting the results of a
SQL query.

To reduce run-time errors,
IM/EX ASCII has a new
Flex-Field feature that
allows an application to
handle ASCII files with an
unknown or changing struc-

New Import/Export Tool
ture. The components also
allow users to skip fields,
customizing the conversion
process. Additionally,
IM/EX ASCII offers the
ability to quit a job in
progress via the Cancel
property.

A demonstration version is
available at Nutshell’s Web
site.
Price: US$99.95 (available in both
16- and 32-bit versions)
Contact: Nutshell Software, 31316
Via Colinas, Ste. 106, Westlake Village,
CA 91362
Phone: (818) 865-7945
Fax: (818) 865-0012
E-Mail: Internet: support@nutshell-
software.com
Web Site: http://www.nutshellsoft-
ware.com
Tamarack Announces Version 2.0 of TtaDBMRO for Delphi

Tamarack Associates of Palo

Alto, CA is shipping version
2.0 of TtaDBMRO, a data
aware control for Delphi.

Usable in 16-and 32-bit
environments, TtaDBMRO
is a DBCtrlGrid-like control
that allows the developer to
display data aware controls
in a scrollable manner. It
supports all Borland field
data aware controls, and is
compatible with Delphi 1
and Delphi 2.

TtaDBMRO also allows
developers to use data aware
controls with different
DataSources, provides several
ways to customize the
appearance of records, and
supports titles.
TtaDBMRO is compatible

with InfoPower 1.2, Orpheus
2.0, TDBLookupComboPlus
4.1, and TDBComboBoxPlus
2.1. It operates under
Windows 3.11, Windows 95,
and Windows NT 3.51. The
new version also adds support
for DBLookupComboBox
and DBLookupListBox.

Trial and demonstration
versions of TtaDBMRO can
be found on the Delphi and
Bdelphi forums on
CompuServe, file names:
MRO.ZIP and MRO-
DEMO.ZIP.

Price: TtaDBMRO, US$25 (including
free version 2.0 updates and support
via e-mail). TtaDBMRO is available
via CompuServe shareware registra-
tion, ID 8213 for US$29.95. The
TtaDBMRO 1.x upgrade is available
from Tamarack Associates for
US$15.00. (This upgrade offer is not
available through CompuServe share-
ware registration.)
Contact: Tamarack Associates, 868
Lincoln Ave., Palo Alto, CA 94301
Phone & Fax: (415) 322-2827
E-Mail: CIS: 72365,46
Web Site: http://ourworld.compu-
serve.com/homepages/deven

4 August 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi 2: A Developer’s Guide
Bill Todd, Vince Kellen

M&T Books

ISBN: 1-55851-476-7
Price: US$44.95
(937 pages, CD-ROM)
Phone: (800) 488-5233
ImageFX Introduces FXTools 4.0 Professional Edition

ImageFX of Rochester, NY

has released FXTools 4.0
Professional Edition, a royal-
ty-free tool kit that adds
imaging and multimedia spe-
cial effects technology to
Delphi 2 or any other envi-
ronment that can host 32-bit
ActiveX controls in Windows
95 or Windows NT. It also
features 16-bit VBX controls
for use with Delphi 1 under
Windows 3.x.

FXTools 4.0 contains eight
reusable ActiveX and VBX
components that give develop-
ers control over the display of
images, text, and shapes, as
well as playback of sound and
video. The image control gives
developers support for most
image file formats including
.BMP, .DIB, .GIF, .JIF, .JPG,
.PCX, .PNG, .RLE, .TGA,
.TIF 5.0, .WMF, and .WPG.

Images can be rotated,
cropped, resized, flipped,
mirrored, dithered, and
printed. The label controls
have five background styles,
including tiled images and
color gradients. Additionally,
text can be rotated, animat-
ed, filled with an image or
gradient, and displayed with
a 3D style. The shape con-
trol can be used to create
buttons that include text and
images. The sound control
supports MCI wave and
MIDI audio, including 32-
channel sound mixing using
DirectSound. The video con-
trol supports .AVI, .MOV,
and MPEG file formats. In
addition, individual video
frames can be displayed with
special effects.
A demonstration version
can be downloaded from
ImageFX’s Web site or
CompuServe forum.

Price: US$399
Contact: ImageFX, 3021 Brighton-
Henrietta TL Road, Rochester, NY
14623-2749
Phone: (800) 229-8030 or
(716) 272-8030
Fax: (716) 272-1873
E-Mail: Internet: imagefx@-
imagefx.com, or CIS: 74431,3331
CIS Forum: GO IMAGEFX
Web Site: http://www.imagefx.com
MKS Source Integrity 7.2 Released, Adds Web Functionality

Mortice Kern Systems of

Waterloo, ON, Canada has
begun shipping an update to
its change management tool,
MKS Source Integrity. In
version 7.2, MKS Source
Integrity includes a security
and administration model, as
well as integration with Web
servers, including Netscape
Enterprise Server and
Microsoft Internet
Information Server, enabling
intranet change management
and distributed development
over the World Wide Web.

MKS Source Integrity also
includes: visual merge, visual
differencing, event triggers, a
configuration language, an
automated building process,
file promotion, NetWare-spe-
cific functionality, and inte-
gration into Delphi, Borland
C++, PowerBuilder, Netscape
Navigator Gold Premium
Internet client software,
Visual C++, Visual Basic,
and Web servers.

MKS Source Integrity
automates the change
process in files and docu-
ments through a project-ori-
ented release management
system and parallel develop-
ment capabilities. Version
7.2 allows development
teams to fine-tune access
permissions by user and
user roles, and create user
groups and SCM policies. It
also features a new reporter
with graphing and custom
report capabilities.

Price: US$499; or US$149 for an
upgrade.
Contact: Mortice Kern Systems, 185
Columbia St. W., Waterloo, ON,
Canada, N2L 5Z5
Phone: (800) 265-2797 or
(519) 884-2251
Fax: (519) 884-8861
E-Mail: Internet: info@mks.com
Web Site: http://www.mks.com

5 August 1996 Delphi Informant

News
L I N E

Augus t 1996

Scotts Valley, CA — Borland
International Inc. has
announced a US$100 rebate
to new owners of Delphi
Desktop 2 through
September 30. In addition,
Borland will include a free
copy of DeltaPoint Inc.’s
QuickSite Web site manager
with every purchase of
Delphi 2, Borland C++ 5.0,

Paradox 7, and Visual dBASE
Professional, a US$99 value.

QuickSite is a Web site
development component that
allows users to create, publish,
and manage Web sites with-
out programming in HTML.

The estimated street price
(before rebate) for a compet-
itive upgrade of Delphi
Desktop 2 is US$199.95.

For more information, call
Borland at (800) 932-9994.

Borland Offers Rebate on Delphi through September

San Francisco CA —
Borland International Inc.
has announced InterClient
for the InterBase cross-plat-
form SQL database server.
Written in the Java pro-
gramming language,
InterClient is platform
independent and provides
JDBC-compliant connec-
tivity software for
InterBase.

The Web server is used for
storing and delivering Java
applications while
InterClient provides a
client/server architecture,
database access, and control
over the end-user applica-
tion interface. This is aimed
at improving end-user
response time, as well as
reducing Web server and
network traffic.

InterBase enabled with
the Java-based InterClient

is targeted at IS managers
using Web technologies for
information distribution
and application develop-
ment. Organizations can
also provide updated appli-
cations via the Web.

InterClient enables dis-
tributed transaction pro-
cessing by both the Java
client and database server;
eliminates the need to
install and maintain plat-
form-specific client data-
base connection and client
libraries; and reduces over-
all Web server traffic on the
network.

Pre-release versions of
InterClient for Windows 95,
Windows NT, and Solaris
will be available for cus-
tomer evaluations. For more
information, visit Borland’s
Web site at http://www.bor-
land.com.

Elk Grove, CA —
Informant Communications
Group, Inc. announced
Delphi Informant was named
Runner Up in the Rookie of
the Year category for the
Computer Press Awards.
The awards featured 26 cate-

gories and over 100 winning
submissions from publications
such as Computerworld, Info-
world, PC World, C|Net, Ziff-
Davis Press, and others.
The select judging panel

included representatives from
PC/Computing, ZD-Net,
MacUser, Hotwired, PC
Games Magazine, McGraw-
Hill, and others.

In their remarks, the judges
said “Delphi Informant earns
reader loyalty by offering
must-read tutorials and com-
mentary in a clear, well-writ-
ten format. A reader-friendly
layout helps pinpoint key
information; a mix of review
and opinion round out a bal-
anced package.”

For more details, visit CPA’s
Web site at http://www.con-
terra.com/webmagic/cpa-
main.htm.

Woburn, MA — SQA, Inc.
and Borland International
Inc. announced a version of
SQA Suite that supports
Delphi Client/Server Suite 2
on the Windows NT and
Windows 95 platforms.

SQA will make this support
available in an update to SQA
Suite 5, the 32-bit version of
the automated testing solution
that began shipping last May.
The updated version of SQA
Suite 5 will integrate with
Delphi via an object-level API

provided by Borland.
Previously, Borland selected

SQA, Inc. as a premier auto-
mated test tool vendor to par-
ticipate in the worldwide
launch of Delphi. With this
new announcement, Borland
has extended their Open
Tools API to include the
interfaces and information
that SQA needs to bring its
Object-Oriented Recording
and Object Testing technolo-
gies to Delphi Client/Server
Suite. This object-level inte-

gration will allow SQA Suite
users to create position-inde-
pendent test scripts for
Delphi applications, as well as
test the properties and data of
objects in 32-bit Delphi
applications, including
ActiveX and OLE controls.

In addition, SQA Suite will
provide integrated load, stress,
and multi-user testing of
Delphi applications in LAN
and WAN environments.

Delphi Informant
Wins Computer
Press Award

SQA & Borland Announce SQA Suite for Delphi Client/Server Suite 2

“SQA Suite for Delphi
Client/Server Suite 2”

continued on page 6

Borland Announces InterClient for InterBase

Visual Components
Licenses Technology

to Borland
Visual Components, Inc.

(VCI), a wholly-owned sub-
sidiary of Sybase, Inc., has

announced licensing
arrangements and devel-

opment alliances with
Borland International,

Netscape Communications
Corp., and Powersoft.

Borland has licensed
OEM editions of the

Formula One spreadsheet,
the First Impression charting
and business graphics com-
ponent, and VisualSpeller, a
100,000-word, multi-lan-
guage dictionary, for its

Delphi 2, Paradox 7, and
C++ 5.0 products.

For more information, visit
VCI’s Web site at

http://www.visualcomp.com
or (800) 884-8665.

6 August 1996 Delphi Informant

Elk Grove, CA — Inform-
ant Communications Group,
Inc. has announced Web
Informant magazine.
Targeted at Web developers,
Web Informant will contain
technical how-to articles on
Java, JavaScript, and Perl
programming, as well as
HTML, VRML, database
application development,
server administration, and
firewalls and security.

The Premiere Issue of Web
Informant will be available in
September 1996 via paid
subscription, or newsstand
outlets across the United
States and Canada. The
magazine will be published
monthly, and carry a cover

price of US$5.95. The annu-
al subscription rate for Web
Informant is US$39.95. The
magazine will be available at
Barnes & Noble, B Dalton
Bookseller, Waldenbooks,
Tower Books, Borders,
CompUSA, Egghead, and
Software Etc.

Informant Communications
Group is also publishing a
“Preview” issue of Web
Informant. The Preview issue
will have a smaller page-
count than the regular maga-
zine, but will provide a typi-
cal cross-section of technical
articles a subscriber will see
each month.
The Preview issue will be

published in early August

a copy of Delphi Informant at
the event.

There is also a chance to
meet with local third-party
consultants, trainers, and
book vendors during the
Delphi Networking Lunch
on day two.

Pricing for the US offer-
ing of the Delphi World
Tour is US$1,095. Those
attending only two days of
the event pay US$595, or
US$295 to attend one day.

Discounts are available for
three or more attending
from the same company.

To receive a complete
brochure via fax, call (708)
833-9122 (or 630-833-
9122 after Aug. 3) and
request document number
5. The brochure can also be
requested from Softbite at
(708) 833-0006 (or 630-
833-0006 after Aug. 3).
Softbite’s Web site is located
at http://www.softbite.com.

Informant Communications Group Announces Web Informant Magazine

Softbite Announces 1996 Delphi World Tour

News
L I N E

Augus t 1996

Addison, IL — Borland
International Inc., Softbite
International, and
Informant Communications
Group have announced the
1996 Delphi World Tour.
The four-day seminar will
take place in both the US
and Europe.

The first day of the
Delphi World Tour is
geared towards those new
to Delphi 1 and 2. It covers
essential techniques, tools,
and tricks of Delphi appli-
cation development. Day
two provides a look at the
techniques used to create
working applications in
Delphi 2.

Day three and four each
offer an advanced Delphi
seminar and review key
features, including
advanced database tech-
niques, creating compo-
nents, and using resources.

Delphi World Tour atten-
dees will receive a free copy of
Delphi 2 Developer version, a
starter subscription (three
issues) to Delphi Informant,
documentation and diskette
containing Delphi code, and

San Francisco, CA —
Borland International Inc.
has announced support for
a component model stan-
dard, the Java Beans
Initiative, proposed by
JavaSoft for Sun
Microsystems Inc.’s Java
programming language.

As previously announced,
Borland’s Latte develop-
ment tool will bring rapid
application development,
reuse, and scalable database
access to Java developers.

In recent demonstrations
of Latte, Borland has pre-
viewed a platform-indepen-

dent component model for
Java, code-named BAJA.
The demonstrations showed
how the BAJA component
model addresses platform-
independent implementa-
tion, compound compo-
nents, support for RAD,
simple UI widgets to non-
visual complex remote ser-
vices, third-party compo-
nent development, and
component persistence.

In addition, Borland will
detail its support for integrat-
ing COM and Open Doc
component model standards
into Java.

1996, and distributed to sub-
scribers of other Informant
Communications Group
publications.

Web Informant is the fourth
title in a line of technical
magazines from Informant
Communications Group.
The others are: Oracle
Informant, Delphi Informant,
and Paradox Informant.

SQA Suite for Delphi
Client/Server Suite 2
(cont.)

SQA expects to have field
test versions of SQA Suite
for Delphi available this
summer. Final pricing and
release date were unavailable
at press time.

Borland Supports the Java Beans Initiative

Washington, DC Aug 12-15

New York/New Jersey Aug 19-22

Chicago, IL Aug 20-23

San Francisco, CA Aug 26-29

Orlando, FL Sep 10-13

Boston, MA Sep 16-19

Houston, TX Sep 23-26

Raleigh, NC Sep 23-26

Minneapolis, MN Sep 30-Oct 3

Atlanta, GA Oct 8-11

Seattle, WA Oct 8-11

Philadelphia, PA Oct 14-17

Denver, CO Oct 21-24

Los Angeles, CA Oct 22-25

Dallas, TX Oct 29-Nov 1

New York/New Jersey Nov 4-7

Columbus, OH Nov 11-14

Chicago, IL Nov 18-21

Washingston, DC Nov 19-22

San Francisco, CA Dec 3-6

Frankfurt, Germany TBA

Amsterdam,
the Netherlands Oct 22-25

London, England Oct 28-31

Crystal Becomes Seagate
Software

Crystal, a wholly-owned sub-
sidiary of Seagate Technology,

Inc. and vendor of Crystal
Reports and Crystal Info, has
changed its name to Seagate

Software, Information
Management Group (IMG).

As part of Seagate Software,
IMG will target the business
intelligence market, expand-
ing its query and reporting

tool offerings. For more infor-
mation, visit the Seagate
Software IMG Web site at

http://www.img.seagatesoft-
ware.com, or call

(800) 877-2340 or
(604) 893-6392.

7 August 1996 Delphi Informant

Leveraging
ReportSmith: Part I
Advanced Delphi Reporting

On the Cover
Delphi 1 / Delphi 2 / ReportSmith 2.5 / ReportSmith 3.0

By Mark Ostroff
ReportSmith is the Rodney Dangerfield of Delphi. And just as Mr
Dangerfield is actually a very savvy performer, ReportSmith is an

extremely powerful part of Delphi. ReportSmith can accomplish many report-
ing tasks that no other reporting tool can match. The key is in knowing how
to leverage ReportSmith to its best advantage in your Delphi applications.
Why Have Multiple Report Writers?
To complicate matters, Delphi 2 features
two reporting tools: ReportSmith, and a
set of native VCL components named
QuickReport. It would seem to be redun-
dant to have multiple ways of creating
reports. There are good reasons, however,
for including both ReportSmith and
QuickReport in the current version of
Delphi. The challenge is to know when to
use each.

QuickReport: simple, fast reporting.
QuickReport is designed for applications where
simple reporting is needed, and the reporting
facility needs to be a part of the application’s
.EXE. QuickReport follows the Delphi devel-
opment model very closely. It is, however, a
design-time, developer-only solution. As such,
QuickReport is best suited for applications
where all reporting needs are limited to a speci-
fied set of reports, and those reports must be
controlled from within your application.

This internal reporting model provides for
easier distribution. It also supplies a faster
report start-up, since the Windows startup
code has already executed by the time your
user runs a report. QuickReport’s smaller
overhead results in reports that generally
run faster as well. Ultimately, applications
that use QuickReport will have a total disk
space requirement that is significantly small-
er than what would be needed for using the
Delphi/ReportSmith combination. Total
system resource requirements are also less
when using QuickReport. And, of course,
since QuickReport components are Delphi
VCL components, you can sub-class them
to add your own reporting functionality.

QuickReport does have a few limitations.
Live data display during report design in
QuickReport is restricted to using a report
preview. This requirement to switch
between design mode and preview mode
makes the design process more complex. In
addition, certain reporting needs can’t be
accomplished with QuickReport. For exam-
ple, leveraging server resources for large data
sets, creating stand-alone reports, and inclu-
sion of crosstabs and data graphs are simply
not within the capacity of QuickReport.

ReportSmith: robust, full-featured report-
ing. ReportSmith, on the other hand, is the
power choice. It is well suited for creating
complex reports that require the inclusion of
data graphs, multiple crosstabs, live data piv-
oting, drill-down selection criteria, or other
ad hoc analysis capabilities. ReportSmith can
also be used to build “smart” reports. A sin-
gle report design can serve double duty. It
can be run either within the context of a

Feature Description

Delphi Allows reports to use the data already
Connection type buffered in the Delphi application’s BDE

connection.

ReportSmith API A programmable API for directly interfacing
other tools with ReportSmith. (The API docu-
mentation is included on the Delphi 2 CD
for editions of Delphi which ship with
ReportSmith.)

32-bit Record processing is visibly faster due
performance to 32-bit data processing.

Figure 1: New ReportSmith 3.0 features.

On the Cover
Delphi program or as a separate stand-alone report. Thus,
ReportSmith is the better choice when you have an applica-
tion that needs to support both data entry/reporting users
and report-only users with the same reports.

ReportSmith also offers a flexible method whereby end-
users can design their own reports. These new reports can
then be run from within your application. Since
ReportSmith is designed for this kind of dual role, it has a
more flexible design interface. Its WYSIWYG design
mode, along with its live data display, makes report design
much simpler than with QuickReport. In fact, although
both QuickReport and ReportSmith can build mailing
label reports, the live data display design interface of
ReportSmith makes it a much better choice for the task.

The design of ReportSmith is tuned for client/server appli-
cations. Its power and performance are well suited to
reporting on very large data sets. The use of ReportSmith
also means that your total disk space requirements can be
more efficient when you have multiple applications that
reference the single installation copy of ReportSmith. The
ability to deploy reports using either the ReportSmith
Run-Time or a complete copy of ReportSmith means that
you can split your user community with even more finely
tuned control. You can support users that just need to run
pre-defined reports, as well as people who need to run
those reports and create their own. This kind of user-com-
munity tailoring is simply not possible with QuickReport.

Which Do I Use?
The key to maximizing the use of any tool is to know
when to use it, and how to apply it properly. Some guide-
lines are given here.

When to use QuickReport. Are load-time performance
and distribution size the overriding decision factors? If
so, QuickReport is the right choice. With smaller data
sets, QuickReport reports will also run faster than
ReportSmith reports. Another important issue is whether
you need to completely control the creation and execu-
tion of reports. Since QuickReport reports are compiled
directly into your .EXE, the end-user has no way to
modify the report, and no way to run it outside of your
application. If you need to create a totally closed solu-
tion, QuickReport is the way to do it.

QuickReport’s better coordination with the Delphi envi-
ronment is also a consideration. However, this is more of a
Delphi 1 development issue. Delphi 2 has much better
integration between Delphi and ReportSmith.

When to use ReportSmith. Are flexibility and power
the most important reporting features for your applica-
tion? If so, ReportSmith is the better choice. It is also
the only way to build an open-ended solution.
ReportSmith is the only way to create “smart” double-
duty reports from a single design. If allowing end-users
8 August 1996 Delphi Informant
to create their own reports is a system requirement, you
will need to include ReportSmith as part of your solu-
tion. Otherwise, developers will be constantly asked to
build new reports as users think of them.

Using ReportSmith 3.0 with Delphi. The Developer and
Client/Server editions of Delphi 2 include a new 32-bit ver-
sion of ReportSmith. ReportSmith 3.0 adds some new capa-
bilities that will affect how you approach the integration of
ReportSmith reports into your Delphi applications. These
new features are summarized in the table shown in Figure 1.

ReportSmith 3.0 differences that affect Delphi develop-
ment. Some 16-bit versus 32-bit integration issues also
exist. You will need to plan for these differences between
ReportSmith 2.5 and 3.0 if you need to support both 16-
bit and 32-bit Delphi applications. The table in Figure 2
summarizes them.

The New Delphi Connection
Coordination between ReportSmith 2.5 and Delphi 1 has
to be implemented programmatically through the use of
report parameters, report variables, and/or DDE. The new
32-bit ReportSmith 3.0 adds the ability to directly use the
same data connection as your Delphi 2 applications. This
feature is referred to as the Delphi Connection.

For most reports, this ability to use the same data buffer
results in much better report performance. It also means
that report coordination between Delphi and ReportSmith
is greatly simplified.

The specific advantages of using the Delphi Connection are:
Faster data selection. A large part of the start-up time
in a traditional ReportSmith report involves running
the report’s underlying SQL code. ReportSmith uses
this code to select which records to include in the
report. With the Delphi Connection, both Delphi
and ReportSmith use the same data connection. The
records to be reported are already selected by the time
the report runs. ReportSmith just needs to format the
data with a Delphi Connection report.
Single development language. Traditional reporting with
ReportSmith involves the use of either ReportSmith
Basic or standard SQL code to perform any necessary

9

U
C
R
t
r
e
D

Feature Description

ReportSmith ReportSmith 2.5 has a Data Dictionary
Data Dictionary Utility that allows a developer to pre-define

table and column aliases, field visibility rights,
etc. There is no 32-bit version of this utility.
However, the editions of ReportSmith that are
included in the Delphi 2 Update release do
allow you to use Data Dictionaries created in
the 16-bit tool when you develop 32-bit
reports in ReportSmith 3.0.

Delphi 2 includes a Delphi 1 installation
directory on the CD. You will have to install
the ReportSmith Data Dictionary tool from
the Delphi 1 directory to enable this feature
in ReportSmith 3.0.

Menu Structures The text of some menu items has changed
from ReportSmith 2.5 to 3.0 to reflect the
Win32 standards. For example, 2.5 uses
“Character” where 3.0 uses “Font” in the
SpeedMenus. (ReportSmith 3.0 currently is
the only Windows 95 logo-compliant
reporting tool.)

These differences may affect program code
that relies on specific text in a menu selec-
tion when you have to support both 16-bit
and 32-bit applications.

Picture Support Both versions of ReportSmith support the use
of .BMP, .PCX, and .DIB graphic formats. Due
to a change in the copyright license for cer-
tain graphic formats, the 32-bit version no
longer supports the .GIF and .TIF formats. If
you need to support both 16-bit and 32-bit
reporting, you will need to avoid using .GIF
or .TIF graphics.

Figure 2: 16-bit features supported differently in ReportSmith 3.0.

On the Cover
code-based operations. This is not a big issue with some
people. Others, however, prefer to learn just one lan-
guage. The Delphi Connection is the way to place total
control over data calculations into your Delphi applica-
tion. Adding the power of DDE and the new
ReportSmith API means you can then control virtually
everything in ReportSmith with Object Pascal code.
More powerful calculated fields. The entire data set
of a Delphi Connection report is controlled by your
Delphi application, including any calculated fields
you define in your data set component. While
ReportSmith itself has the ability to create calculated
fields, the power of these “derived fields” is limited
to what you can accomplish with either ReportSmith
Basic or SQL code. Delphi can, of course, take
advantage of the full power of Object Pascal. You can
use your own custom code, commercial statistical
packages, and any function call contained in DLL
libraries or the Windows API in creating derived
fields. There are no limits to the calculated fields you
can create in Delphi.

sing Delphi-supplied parameters. The Delphi
onnection is only available for building 32-bit reports in
eportSmith 3.0. Using report parameters is, therefore,

he only option available for 16-bit applications. There are
easons why you might still want to use this capability —
ven in 32-bit applications — rather than using the direct
elphi Connection:
August 1996 Delphi Informant
Powerful report control. ReportSmith report vari-
ables can be used for a wide variety of functions that
would not be possible by simply using the same data
connection as your Delphi application. Report vari-
ables can be used for internal report processing that
reaches outside the current Delphi data set. For
example, you may want to highlight in red any pur-
chase orders greater than a certain target amount.
Report variables give you the ability to build a
report that gets this threshold level at report time by
passing a value from a Delphi variable, a value
stored in an .INI file or the Windows 95 Registry,
or by prompting the user. You can even take advan-
tage of this kind of report variable processing with a
report that does use the Delphi Connection to select
the records to include in the report.
Creating context-sensitive “smart” reports. Creating
reports that can be run by themselves is one of the pri-
mary reasons to use ReportSmith. If you also need these
reports to respond to the current Delphi environment
when run from within your application, report variables
provide the ability to create context-sensitive reports.
These “smart” reports will feed off the parameters passed
by Delphi from within your application. Then, when
the same report is run outside of your application, it will
automatically prompt the user for the necessary infor-
mation to run the report in stand-alone mode. (Delphi
Connection reports cannot be run by themselves. Your
Delphi application must be running to be able to run a
Delphi Connection report. Otherwise, the report will
auto-exit with an error message.)
Creating cross-platform reports. Many organizations
recognize that the migration from 16-bit to 32-bit
Windows platforms will take a while. The applications
that support this transition best are the ones that pro-
vide for a “develop once, deploy on both” strategy.
Since the Delphi Connection is a 32-bit only feature,
cross-platform reports must rely on report variables
and Delphi TReport parameters.
Reporting on huge data sets. ReportSmith was originally
designed as a client/server reporting tool. It provides tun-
ing parameters in the Options dialog box for reporting on
very large sets of data (see Figure 3). These Dynamic Data
Access features are turned off when the Delphi
Connection is used. (All data selection is controlled by
the BDE buffer of your Delphi application.) As such, you
may want to carefully weigh the performance ramifica-
tions of creating Delphi Connection reports when select-
ing huge data sets.

The New ReportSmith API
ReportSmith 3.0 also ships with the new ReportSmith
API. This standard programming interface can be used
by Delphi to control ReportSmith directly. You are no
longer restricted to using the less powerful DDE route
to direct the operation of ReportSmith from within
your Delphi applications. The documentation for this
API is included on the Delphi 2 CD for editions that
include ReportSmith 3.0.

Figure 3: Dynamic Data Access settings.

On the Cover
Using
ReportSmith
with Delphi
As noted earlier,
two main meth-
ods exist for
integrating
ReportSmith

reports into your Delphi applications. The first method,
using Delphi-supplied report parameters, applies to both
16-bit and 32-bit versions. The second method is to use
the new 32-bit Delphi Connection.

Using Delphi-supplied report parameters. The key to
using ReportSmith is in coordinating two separate exe-
cutables, your Delphi applications and ReportSmith. All
versions of ReportSmith support the use of report vari-
ables. Delphi’s TReport component supports a mechanism
whereby you can pass values from your Delphi application
into report variables contained within your report.

The basic development sequence for using Delphi-sup-
plied report parameters is as follows:

Build a ReportSmith report that uses report variables.
Define report variables for any of the items you want
your Delphi application to use for controlling the
report’s execution.
Add one or more TReport components to your Delphi
application to control the report execution.
Add Delphi code to your application to pass the
appropriate values to the report’s report variables when
the reports are run or refreshed.

Building a report with report variables. ReportSmith allows
you to create variables within the report design that are not
tied to the data. Instead, these report variables have values
that are typically supplied by the user and then become avail-
able within the report for logic tasks such as record selection.
For example, you can create a report variable to store a user-
supplied state. This value can then be used in a selection cri-
teria to limit the report to those records from the state the
user entered into the report variable. In the case of executing
these reports from a Delphi application, your application
becomes the report’s user, and can supply the necessary values
for any report variables defined in the report.

“Smart” reports. Report variables thus become the mecha-
nism whereby you can create “smart” reports. The values
for report variables can be supplied directly by the end-
user, or indirectly by passing them from a Delphi applica-
tion. When the report is run from the Delphi application,
ReportSmith verifies if all report variables have already
been supplied values. If they have, the report proceeds and
automatically uses the values supplied by Delphi. If any of
the report variables have not been assigned a value, or if the
report is run “stand-alone” (i.e. outside of any Delphi
application), ReportSmith is intelligent enough to prompt
the end-user to supply values directly.
10 August 1996 Delphi Informant
Start ReportSmith and create a new columnar report based
on the CUSTOMER.DB table in the DBDEMOS alias.
(This alias is created when you install Delphi; it points to
Delphi’s sample data directory.) You will use this report as
the basis for building your first “smart” report.

Defining a report variable. Use the Tools | Report Variables

menu selection to bring up the Report Variables definition
dialog box. This is where you will create custom prompts
and definition specifications for your report variable.
ReportSmith will use the information to create a dialog
box for prompting the user for each report variable.

The Name field is where you give your report variable
its designated name. This name will appear throughout
drop-down lists in ReportSmith wherever a report vari-
able can be used.
The Type of a report variable can be defined as string,
number, date, time, or date/time. The variable type will
affect the various entry options that will appear below.
The Title refers to the title string that will be displayed
in the dialog box ReportSmith uses to prompt the user
for a value to assign this report variable.
The Prompt value refers to the string that will appear as
the message within the prompting dialog box.

For each report variable, you have a choice of Entry options.
The report can have the user supply a value by typing it in,
choosing from a defined list, choosing the value from a
table, or choosing between two values (yes/no, true/false,
etc.). When you select Choose value from a table, you can
use a different data source type than the rest of your report.
Various option settings will appear based on the type of the
report variable and the entry option chosen.

To save the definition of your new report variable, click the
Add button. Just editing the current data on the right side of
the dialog box will change the currently highlighted report
variable, not create a new one. To create a new report vari-
able, you must click on the New button first. Create the
StateSelection report variable that is shown in Figure 4.

When you are finished creating report variables, ReportSmith
will prompt you to supply initial values for each variable.
However, you won’t see any effect on your report; you haven’t
told ReportSmith how to use your new report variable yet.

Using a report variable. Report variables are most often used
to provide run-time record selection. In the previous example,
say you wanted to make the selection of which state to
include — something the user determines at run time. Once
you have the StateSelection report variable defined, you can
add it to the record selection criteria. Just use the drop-down
lists in the Selections dialog box to switch from a “hard
coded” text value to use your report variable instead. Say your
report originally limited the records to those with a country
of either the Bahamas or the US. Figure 5 shows how your
selection criteria might look after adding the StateSelection
report variable to control which US state gets included.

Figure 4 (Top): The Report Variables definition dialog box.
Figure 5 (Bottom): Using a report variable for record selection.

Parameter Value to Enter

Name Include Nulls
Type String
Title Include Nulls?
Prompt Should records with

no state be included?
Entry Choose between two

values
Message Message
or Dialog
Yes value Yes
No value No

Figure 6: Defining
a Yes/No report
variable.

Figure 7: Expanding the selection criteria with a list.

On the Cover
You can also make use of selection lists in conjunction with
report variables to create some pretty complex criteria. Say,
for example, that you only want null state records included if
the user wants to include them. To accomplish this task, first
create a NullSelection report variable. The parameters should
appear as shown in Figure 6.

Once this report variable is defined, open the Selections
dialog box and click in the box at the left side of the crite-
ria that says the State field can be null. A pop-up list will
appear. Pick the create a new list and move this item into it

option. Now add a new criteria in that list that states that
the IncludeNull report variable must be equal to the text
“Yes”. Your criteria should now look like the dialog box
shown in Figure 7.

Now you should be prompted twice, once for the state
to select and once to decide whether to include records
with a null value in the State field. Selecting Yes to the
second prompt will cause the records from the Bahamas
to appear. Selecting No will limit the report to records
from the US.
11 August 1996 Delphi Informant
Changing the value of a report variable. You may want to
test multiple parts of a report controlled by a report variable.
You might want to print a different set of records without
having to reload the report. In either case, you need to alter
the value initially assigned to a report variable. Simply select
Tools | Report Variables from the main menu, click on the
name of the report variable whose value you want to change,
and click on the Value button that appears near the bottom of
the dialog box. ReportSmith will prompt you for a different
value in the same manner it prompted for the initial value.

Creating the Delphi Application
The next step in creating ReportSmith reports that can
run from your Delphi application is to build the necessary
capabilities into your Delphi application. This involves the
use of Delphi’s TReport component.

The TReport component. The TReport component resides
in the Data Access page of Delphi’s Component Palette. It
is what you will use to control all aspects of running
ReportSmith reports. While other properties exist, the
table in Figure 8 shows the key properties upon which
most of your development attention will be focused.
Please note the LaunchType property is new to Delphi 2.

The TReport component also supplies several methods for
dealing with ReportSmith from within your Delphi appli-
cation. The key methods are listed in Figure 9. All TReport
methods operate via DDE, but you do not need to pro-

12 August 1996 Delphi Informant

Property Function
AutoUnload Determines whether ReportSmith exits or stays

in memory once the report is finished. Keeping
ReportSmith resident can significantly increase
the performance of applications that print mul-
tiple reports.

Use the CloseApplication method to shut down
ReportSmith if AutoUnload is set to False.

InitialValues Use this array of TStrings to specify initial val-
ues for any report variables included in the
report. See the discussion of passing report
variable values for complete details.

LaunchType Delphi 2 only. Determines whether ReportSmith
or the ReportSmith RunTime will be launched.
The default value of ltDefault will launch the
ReportSmith 3.0 design environment when you
double-click on the TReport in Delphi’s IDE,
and will execute the ReportSmith 3.0 RunTime
when you launch a report from within a run-
ning Delphi application.

Preview Determines whether the Run method launches a
print preview or hard copy output. If Preview is
set to True, use the Print method instead of Run
to force hard copy output.

ReportDir The directory where the report resides.
At run time, use the function
ExtractFilePath(ParamStr(0)if you want to set
this property to the current application directory.
Do not leave this property blank.

ReportName The name of the .RPT file to run. Place only the
name of the file here. All directory information
should be placed in the ReportDir property. Any
directory information placed in the ReportName
property will be ignored.

Figure 8: Key properties of the TReport component.

Method Function
CloseApplication Tells ReportSmith to perform a File | Exit. Use

this method when your TReport’s AutoUnload
property is False. Make sure you call
CloseApplication before exiting your Delphi 1
applications. In Delphi 1, ReportSmith will not
exit even when your application shuts down.
This behavior has changed with 32-bit applica-
tions. ReportSmith will automatically shut down
when you exit a Delphi 2 application, even if
AutoUnload is False.

Connect Allows you to connect to a database and
bypass the ReportSmith database login. The
Connect method is not needed for reports that
use the Delphi Connection.

Print Forces a hard copy output of the report,
regardless of the value of the Preview property.

RecalcReport Tells ReportSmith to refresh the report. Use this
method whenever you change the value of a
report variable or navigate to a new record set
in a Delphi Connection report.

Run Runs the designated report, looking at the
value of the Preview property to determine if a
preview or a hard copy should be made.

RunMacro Lets you run a ReportBasic macro.

SetVariable Lets you set or change the value of a report
variable. If you specify a report variable name
that is not used in the current report, the vari-
able will simply be ignored.

SetVariableLines Similar to SetVariable, this method lets you set
or change the value of a report variable by
using an array of type TStrings.

Figure 9: Key TReport component methods.

On the Cover
gram any of the DDE operations yourself. They are auto-
matically encapsulated within the TReport component.
You also do not need to use any of the Delphi DDE com-
ponents when you work with TReport.

All TReport methods provide a True/False return value. This
return value gives you feedback on the success or failure of
TReport’s action. If the method’s action gets a “command
received” confirmation from ReportSmith, the return value
will be True. A return value of False indicates some kind of
problem with the DDE conversation.

Integrating ReportSmith report variables into your Delphi
application. Delphi applications can control ReportSmith
by pre-defining the values of any report variables used. Set
up these report variable values in any way you want within
Delphi. For example, you can even create a “Query-by-
Form” interface to control all the specifics of a report, assign
any values the end-user has set to the appropriate report
variables, then launch the report. Any report variable you
supply a value for will be skipped in ReportSmith’s prompt-
ing process. ReportSmith will still prompt the user for any
report variables that do not yet have a value.

Keep in mind that Delphi deals with report variables in two
ways, depending on whether the report is already open. If
the report hasn’t been opened, you need to assign values by
setting up the InitialValues property of the TReport. Once
the report is running, set or change the values of report vari-
ables using the SetVariable or SetVariableLines method.

Do not use SetVariable or SetVariableLines without an
open report. These methods try to establish a DDE con-
versation with ReportSmith. If ReportSmith isn’t run-
ning, these methods will launch it. Your TReport may
not have all its properties set properly for your report, so
ReportSmith will not be launched with the proper
setup. You might not even have a report open, in which
case your report variable changes will be ignored with
no way for Delphi to know they have been lost. Make
sure you use the InitialValues property to establish
report variable values before launching a report.

Assigning initial values to report variables. You can assign
initial values to report variables either at design time using
the Delphi Object Inspector, or in application code. To set
initial values at design time, double-click on the edit box
for the InitialValues property and enter the report variable
name and its value in the string editor.

Notice that the proper syntax for each entry in the
InitialValues property is:

@ReportVarName=<ValueToAssign>

No spaces are allowed. You also need to remember that
report variable names are case-sensitive. You must dupli-
cate the report variable’s name exactly as it was defined in
ReportSmith. In the example shown in Figure 10, enter-

Figure 10: Assigning initial report variable values at design time.

Figure 11: DEMO1.RPT running on its own.

On the Cover

Figure 12: DEMO1.RPT run by a Delphi application.
ing a variable name of StateSelection would result in the
value being ignored. ReportSmith’s own prompting logic
would then take over and ask the user to select a state. So,
if you think your Delphi application is supplying a value
to a report variable but the report still prompts for it,
check that you are using the correct report variable name.

You can also attach code to a Delphi event that sets up
the initial values. Use the Add method of the InitialValues
property to set initial values into a report variable. For
example, you might place the following code on a Print

button to initialize a report and then launch it:

procedure TForm1.BtnPreviewClick(Sender: TObject);
begin

{ Set to current application directory }
Report1.ReportDir := ExtractFilePath(ParamStr(0));
Report1.ReportName := 'Demo1.rpt';
Report1.InitialValues.Add('@StateSelection=<CA>');
Report1.InitialValues.Add('@IncludeNulls=<No>');
Report1.run;

end;

Changing the value of a report variable. Once a report
is opened, you must change report variables in a way
that can be recognized by a running report. Delphi uses
TReport methods to change report variables via a two-
way DDE conversation. Changing a report variable
does not automatically refresh the report based on the
new value.

This separation allows you to set multiple new values
before using the RecalcReport method to force a refresh of
the report. You should usually test the success of any
changes before trying to tell ReportSmith to recalculate
the report. Here’s an example:

if Report1.SetVariable('IncludeNulls','Yes') then
Report1.RecalcReport;

It is extremely important to note the syntax used by the
SetVariable and SetVariableLines methods is very differ-
ent from what you use to set the InitialValues property.

An Example Delphi Application
The RS_DEMO1 project gives you an example of how to
control a ReportSmith report from within a Delphi appli-
cation. This project makes use of the techniques described
13 August 1996 Delphi Informant
earlier to control the running of the DEMO1.RPT report
file via report variables.
DEMO1.RPT
is an example
of a “smart”
report. First,
start up
ReportSmith
and open the
DEMO1.RPT
report file by
itself. You will
see that the
report auto-
matically

prompts you to supply a state abbreviation (see Figure 11).
It then asks if you want to include records with a blank in
the state field. Once you answer these questions, the report
proceeds.

Now try running the Delphi application RS_DEMO1.EXE
and see the difference in running the same report controlled
by this Delphi application (see Figure 12). Since Delphi is
supplying the values for the two report variables, the report
already has all the information it needs before it starts. The
end-user is never prompted by ReportSmith.
The main code that runs the RS_DEMO1 application
is listed in Figure 13. Take particular note of the SetVars
procedure. It tests whether the application has run
ReportSmith before deciding on how to implement
changes made to the items supplying values to the
report variables. If the report hasn’t been started, the
code uses the InitialValues property. If the report is
already running, the SetVariables method is used and
the Recalc Report button is activated. Try changing the
value of one or both items in RS_DEMO1 and watch
the effect of hitting the Recalc Report button. The report
will update behind the scenes.

Until Next Month ...
Despite its Rodney Dangerfield reputation, ReportSmith is

14 August 1996 Delphi Informant

Figure 13: The main code that runs the RS_DEMO1 application.

procedure TForm1.SetVars(Sender: TObject);
begin

if BtnPreview.Visible then
begin

Report1.InitialValues.Add(
'@StateSelection=<'+cbStateList.Text+'>');

if CbxNulls.checked then
Report1.InitialValues.Add('@IncludeNulls=<Yes>')

else
Report1.InitialValues.Add('@IncludeNulls=<No>');

end
else

begin
Report1.SetVariable('StateSelection',

cbStateList.Text);
if CbxNulls.checked then

Report1.SetVariable('IncludeNulls','Yes')
else

Report1.SetVariable('IncludeNulls','No');
BtnRecalc.Enabled := True;

end;
end;

procedure TForm1.BtnRecalcClick(Sender: TObject);
begin

Report1.RecalcReport;
BtnRecalc.Enabled := False;

end;

procedure TForm1.BtnPreviewClick(Sender: TObject);
begin

Report1.ReportDir := ExtractFilePath(ParamStr(0));
Report1.Run;
BtnRecalc.Top := 16;
BtnPreview.Visible := False;
BtnRecalc.Visible := True;

end;

On the Cover
a powerful reporting tool that can be easily integrated into
your Delphi applications. Hopefully this article has shown
you a few techniques you can use in your own applications.
This month, we tackled the issues of when to use
ReportSmith, and how to call ReportSmith reports
using report variables. Next month we’ll address the use
of the new Delphi Connection. ∆

Some of the material in this article is excerpted by permission
from the author’s chapter on ReportSmith in the book
“Delphi In Depth”, copyright 1996 by Osborne/McGraw-
Hill. All code examples given here are found on the CD that
accompanies the book.

The demonstration project and report referenced in this article
are available on the Delphi Works CD located in
INFORM\96\AUG\DI9608MO.
Mark Ostroff has over 16 years experience in the computer industry. He began by
programming mini-computer medical research data acquisition systems, device
interfaces, and process control database systems in a variety of 3GL computer lan-
guages. He then moved to PC’s using dBASE and Clipper to create systems for the
US Navy and IBM’s COS Division. He volunteered to helped create the original
Paradox-based “InTouch System” for the Friends of the Vietnam Veteran’s
Memorial. Mark has worked for Borland for the past five years as a Systems
Engineer, specializing in database applications.

15 August 1996 Delphi Informant

QuickReport
An Introduction to Delphi 2’s Alternative
Report Generator

On the Cover
QuickReport / Delphi 1 / Delphi 2

By Cary Jensen, Ph.D.
Nearly every edition of Delphi features Borland’s ReportSmith, a tool
that allows developers to create extremely flexible and powerful

reports. However, not every Delphi application requires all the features
ReportSmith provides. And, certainly, not all applications need the over-
head that including ReportSmith reports entails.
For example, when shipping a Delphi applica-
tion with ReportSmith reports, you must also
ship ReportSmith Runtime. Not only does this
mean your application’s installation disk set
must include the three ReportSmith Runtime
installation disks, but your program will occu-
py an additional 5 to 6MB of hard disk space.
(The 16-bit version of ReportSmith Runtime
requires a little over 5MB, while the 32-bit
version requires more than 6MB.) Granted,
this additional storage is a one-time concern,
since only one copy of ReportSmith Runtime
is required per machine.

To give Delphi developers the ability to
include reports in applications without
ReportSmith’s overhead, a number of third-
party developers have made available (often
through shareware) component-based report-
ing tools. Some of these products include:

ReportPrinter by Nevrona Designs
Ace Reporter by SCT [Bill Todd’s review
of Ace Reporter begins on page 46]
QuickReport by QSD (Quick Soft
Development AS, located in Oslo,
Norway)

Each of these reporting tools allow Delphi
developers to define reports they can print and
preview from an application without the need
for additional files. Specifically, these tools per-
mit all the code necessary for producing the
reports to compile into your application’s .EXE.

One of these component-based report
tools, QuickReport, is included with
Delphi 2. (A 16-bit shareware version is
available for download. For more informa-
tion, check out QSD’s Web site at
http://www.qsd.no/products/quickrep.)

This article is an introduction to building
QuickReport reports and how to use them in
your applications. Among the issues we’ll
cover include the essential components need-
ed to make a form into a QuickReport
report; the names and uses of the various
components you can include in a report;
and, a more detailed discussion of report
bands. For additional information, refer to
Delphi’s online Help, the QSD Web site, or
Chapter 10, “Reporting with QuickReport
in Delphi 2” in the book Delphi In Depth
[Osborne/McGraw-Hill, 1996].

A QuickReport Overview
Using the components on the QReport page of
the Component Palette, you can create reports
ranging from very simple lists that include data
from a single DataSet, to highly sophisticated
reports, e.g. those displaying memo fields and
bitmap data, as well as reports showing data
drawn from multiple DataSets. These reports
are compiled into your applications, and can be
easily printed and previewed at run time.

Six essential components are needed to create
a report with QuickReport:

a form
a QuickReport component
a DataSource component
a DataSet descendant (i.e. a Table,
Query, or StoredProc component)
a QRBand component

On the Cover

Figure 1 (Top): A form has been made into a basic QuickReport
report by placing several QuickReport components on it.
Figure 2 (Bottom): A QuickReport report in the default previewer.
one or more of the QuickReport-printable components.
The most basic of the QuickReport-printable compo-
nents are QRLabels for printing a static text label, and
QRDBLabels for printing data fields from a DataSet.

The form component will be the container on which the
QuickReport is constructed. In most cases, you’ll use one
form for each QuickReport report in your application. You
can, although it’s less common, make one form the basis for
multiple reports.

Residing on the QReport page of the Component Palette, the
QuickReport component is the central component for any
QuickReport report. Conceptually, you can consider a
QuickReport component the ingredient for changing a form
into a report. Via its DataSource property, the QuickReport
component links to the required DataSource component. This
DataSource, in turn, must point to the required DataSet. The
data in this DataSet is the report’s main source of data.

At a minimum, a QuickReport report must include at least one
QRBand component, but most include more than one. The
QRBand is a container where you’ll place the report’s printable
elements. As mentioned, these include the QRLabel and
QRDBLabel components.

The display of the printable elements you place in a QRBand
primarily depends on the BandType property of the QRBand.
If individual records from the QuickReport’s DataSource are
being printed, at least one QRBand component in the report
will have a BandType of rbDetail. The printable elements with-
in this QRBand are printed for every record in a DataSet.
Since most reports also include a page header and footer, you’ll
probably include at least two additional bands in your report:
one with its BandType set to rbPageHeader and another with its
BandType set to rbPageFooter.

Creating a Simple Report Example
To create our simple report example, follow these instructions:

Create a new project.
Place a DataSource, Table, QuickReport, and QRBand
on the project’s main form. The default Align property
for the QRBand is alTop, so the QRBand will auto-
matically move to the top of the form.
Set the DataSet property of the DataSource to Table1. Set
the Table component’s DatabaseName property to
DBDEMOS, its TableName property to CUSTOMER.DB,
and its Active property to True.
Set the QuickReport’s DataSource property to DataSource1.
Set the QRBand’s BandType property to rbDetail.
Place one QRLabel and one QRDBLabel in the
QRBand. Set the QRLabel’s Caption property to
Company Name. Set the QRDBLabel’s DataSource prop-
erty to DataSource1, and its DataField property to
Company. Since Table1 is active, when you have set the
DataField property of the QRDBLabel component to
Company, the company name associated with the first
record in the CUSTOMER.DB table will appear in this
component. The form should now resemble Figure 1.
16 August 1996 Delphi Informant
Previewing a Design Time QuickReport
You don’t have to run a project to preview a QuickReport
report. Provided the DataSets used for the data in the
report are active, you can view the report at design time.
To do this, double-click the QuickReport component, or
right-click the QuickReport component and select Preview

report from the displayed SpeedMenu. The QuickReport
component will format your report and display it in the
default QuickReport previewer (see Figure 2).

While previewing your QuickReport reports at design time is
convenient, you should always rely on run-time tests to verify
your QuickReport reports. Most QuickReport components
include event methods to which you can assign event handlers
to control many aspects of the report’s display and printing.

For example, you can use these event handlers to perform con-
ditional highlighting of fields, add conditional page breaks, or
load and print custom data based on the contents of the
report. However, these event handlers are not executed when
you preview a report at design time. Consequently, if the event
handlers have any effect on the report’s content, format, or
page control, a design-time previewed report will be different
from the same report when previewed or printed at run time.

Using a QuickReport at Run Time
To allow the user to preview or print a QuickReport

On the Cover
report, you must explicitly call the QuickReport Preview
or Print methods. However, this is the minimum you
must do. Using a QuickReport report from a Delphi
application should include several additional steps to
properly configure it. For example, it’s not likely you’ll
display the form containing the QuickReport components
to the user. Instead, you’ll call the QuickReport’s Preview
or Print methods from another form.

Furthermore, while Delphi automatically calls the construc-
tor of the form that contains the QuickReport, you may
decide to explicitly call the form’s constructor at run time,
and then release the form when it’s no longer needed. This
reduces the resources your application requires.

Both of these techniques can easily be performed with the
QuickReport report created in the preceding section.

Previewing and Printing a QuickReport Report
Use the following steps to demonstrate printing or previewing
at run time with the report created in the preceding section:

Select File | New Form from Delphi’s main menu.
Place two Button components on the new form. Change
the Caption property of Button1 to Preview Report, and
change the Caption property of Button2 to Print Report.
Double-click the Preview Report button to create an
OnClick event handler for it. Enter the following code:

procedure TForm2.Button1Click(Sender: TObject);
begin

Form1 := TForm1.Create(Self);
Form1.QuickReport1.Preview;
Form1.Release;

end;

Next, double-click the Print Report button and enter the
following code into its OnClick event handler:

procedure TForm2.Button2Click(Sender: TObject);
begin

Form1 := TForm1.Create(Self);
Form1.QuickReport1.Print;
Form1.Release;

end;

While in Unit2, select File | Use Unit. Select Unit1 from
the displayed dialog box. This makes the declarations that
appear in the interface section of Unit1 available to
Unit2. (This is required to refer to the type TForm1 and
the variable Form1 from Unit2.)
Designate Form2 as the Main form. Do this by selecting
Project | Options (Delphi 2) or Options | Project Options

(Delphi 1) to display the Project Options dialog box.
From the Forms page of this dialog box, select Form2
from the Main Form drop-down menu.
Remove Form1 from the Auto-create forms list. Do this by
selecting Form1 from the Auto-create forms list on the
Forms page of the Project Options dialog box, and then
click >> to move Form1 into the Available forms list.
Now close the Project Options dialog box.
Run the project. When you click the Preview Report but-
17 August 1996 Delphi Informant
ton, the default QuickReport previewer dialog box will
appear, and when you click Print Report, the QuickReport
will be sent to the printer.

Using Data Modules with QuickReport
While the preceding report example includes both the
DataSource and DataSet components on the same form as
the QuickReport components, Delphi 2 provides you with a
more attractive option — data modules. Using a data module
to hold all DataSets used by your QuickReport reports sim-
plifies the creation and maintenance of the reporting side of
your applications.

After you define the data module, select File | Use Unit from
the QuickReport form (or its associated unit), and select the
unit associated with the data module. From that point, all
DataSources and DataSets defined for the data module are
available to the QuickReport components.

In most cases, however, the data module you use for reporting
should be separate from those you use for the interactive elements
of your user interface (e.g. data entry forms). Consequently, a
Delphi 2 application will often include at least two data modules
— one for the user interface, and another for reporting.

The reason for using separate data modules for data entry and
printing is fairly simple. When a QuickReport is either pre-
viewing or printing the data in a DataSet, it must navigate that
DataSet. While this behavior is harmless if the QuickReport is
not using a DataSet accessible to the user, it can pose problems
if the QuickReport and the user are sharing the same DataSet.

For example, if a user is editing a record, and then, before
posting changes to the record, attempts to print or preview
the report, QuickReport causes the changes to be explicitly
posted. Furthermore, after previewing the report, the user
will be returned to the last record in the table (actually, the
last record printed or previewed). In other words, the user
will probably not be on the same record he or she was edit-
ing. By comparison, if the user interface and QuickReport
use different DataSets — even if they point to the same
table — previewing a QuickReport report will have no effect
on the current record’s state.

Components Used in QuickReport
The example we built represents the simplest report you can
create with QuickReport. Consequently, it employed only a
few of the available QuickReport components. The QReport
page of the Component Palette lists a total of 11 components
that you can use in your QuickReport reports. In addition to
these, the Component Palette features two other components
that you can include in your reports. Figure 3 lists and
describes all 13 of these components.

In addition to those shown in Figure 3, there are two more
QuickReport components that do not appear on the
Component Palette. The non-visual QRPrinter component
is created automatically for every QuickReport. QRPrinter

Component Description
QuickReport Required component that makes a form a

QuickReport.

QRBand Panel-type object on which you place printable
components. The BandType property defines
what feature a particular QRBand provides.

QRLabel Static, single line of text.

QRDBText Use to display a field from a DataSource.

QRDetailLink Defines the link between a master and detail
QRBand, as well as between a Detail and a
SubDetail QRBand.

QRMemo Use to define multiple lines of static text.

QRShape Shape component for a QuickReport.

QRDBCalc Component for displaying simple summary
statistics. Can also be used for single fields
inside the Detail and SubDetail bands for the
purpose of applying picture (display) formats.

QRPreview Panel-like object used to display the image of
a report preview. Use to create a custom
report previewer.

QRGroup Use to identify which QRBands are the Detail,
Header, and Footer bands for groups of
records.

QRSysData Field used to display system and report data,
such as the date, the time, page number,
record number, and so on.

DBImage Field used to display bitmaps from a DataSet.

Image Use to display bitmaps.

Figure 3: The components for use with QuickReport reports.

On the Cover

Band Type Description

rbColumnHeader Optional ColumnHeader band that con-
tains column headings for a columnar
report. These column headings can alterna-
tively be placed in a Header band, such as
a PageHeader of GroupHeader.

rbDetail The Detail band is printed once for each
record in a DataSet. Most reports have one
Detail band. In a master/detail report, you
can use one Detail band for each DataSet
(an alternative is to use a SubDetail band
for detail records). Only summary reports
do not include at least one Detail band.

rbGroupFooter When groups are defined using either
QRGroup or QRDetailLink components, an
optional GroupFooter band can be used to
print elements at the end of a group.

rbGroupHeader When groups are defined using either
QRGroup or QRDetailLink components, an
optional GroupHeader can be used to print
elements before each group.

rbOverlay The optional Overlay band contains print-
able elements that will be printed over all
other bands in a report. For example, an
Overlay can contain a logo that elements
from other bands will print on top of.

rbPageFooter The optional PageFooter band contains ele-
ments that will be printed at the bottom of
each page of the report.

rbPageHeader The optional PageHeader band contains
elements that will be printed at the top of
each page of the report.

rbSubDetail The SubDetail band is essentially the same
as a Detail band, but is designed to be
used for a detail table in a master/detail
report. While you always use a Detail band
for the master table in a report, you can
use either a Detail or a SubDetail band for
the detail records. You use a QRDetailLink
component to identify a SubDetail band.

rbSummary The optional Summary band is printed once
at the end of a report, after the last master
record in a single table report, or after the
last detail record in a master/detail report.

rbTitle The optional Title band is printed once at
the beginning of the report. The
QuickReport property TitleBeforeHeader
defines whether the Title band is printed
before the page header on the first page
of the report.

Figure 4: QRBand BandType property values.
provides you with low-level access to your printer’s features,
such as issuing a form feed. The second component,
QRCustomControl, is the base class for the QuickReport
components. Normally, you won’t use this component in
your applications.

Using QRBands
All QuickReport reports must use at least one QRBand, and
most use at least three. As mentioned, the most important
property of a QRBand is BandType because it defines the
role that the band will play. Figure 4 displays a list of the
various BandType values, and how they affect the QRBand.

Most reports use at least three QRBands:
1) one acts as the page header
2) one acts as the detail
3) one acts as the page footer

The page header and page footer provide the top and bottom
margin for the page, while the detail band displays the data
from each record.

After the BandType property, the second most important
property of a QRBand is Height. The Height of a QRBand
determines how much space it will occupy on the report. For
example, the Height property of a band designated as the
page header (by setting its BandType to rbPageHeader) deter-
mines the size of the top margin of each page of your report.
Likewise, the Height of a Detail band determines how much
18 August 1996 Delphi Informant
vertical space is used for each record in the master table, and
consequently, influences the maximum number of records
that can appear on any given page.

Here’s a tip: You can set the Ruler property of a QRBand to
a value other than qrrNone to display a vertical or horizon-
tal ruler (or both vertical and horizontal rulers) in either
inches or centimeters. These rulers can provide invaluable
assistance for accurately placing objects in your QRBands.

Creating a Multi-Band Report
When your QuickReport reports contain more than one band,
they can become much more difficult to create and maintain.
This is because there is nothing that visually distinguishes one
type of band from another, other than the band’s published
properties in the Object Inspector. Moreover, these properties
are displayed for only one band at a time — the selected band.

On the Cover

Figure 5 (Top): The basic design of a report with four bands.
Figure 6 (Bottom): Our completed report in the previewer.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based
database development company. He is author of more than a dozen
books, including Delphi In Depth [Osborne/McGraw-Hill, 1996]. He is
also Contributing Editor of Paradox Informant and Delphi Informant,
and is this year’s Chairperson of the Paradox Advisory Board for the
upcoming Borland Developers Conference. You can reach Jensen Data
Systems at (713) 359-3311, or via CompuServe at 76307,1533.
By following the proceeding rules, you’ll find your multi-band
reports much easier to create, as well as easier to modify later:
First design your report on paper. This allows you, in
advance, to identify how many bands, and of what types,
you’ll place onto your form.

Place your bands onto the form in the logical order
they’ll be printed. For example, if you’re going to have a
title band on your report, place it on the form first, then
place your page header, detail band, page footer, and sum-
mary band. The QRBand components are top-aligned.
The first band placed will always appear at the top of the
form, and the second will appear in the second position.

While the actual order of the bands has no influence on their
behavior, a multi-band report is much easier to use if the
order of the bands on the form duplicates the role they play
in the report. (Note that if you misplace a band, you can
drag it to a new position. For example, if you add a Title
band and it appears as the last band on the form, you can
drag it to the top position.)

Always give your bands meaningful names that indicate
their role in the report. For example, set the Name prop-
erty of your Title band to Title, or another name identi-
fying how the band is being used. This is especially impor-
tant when creating master/detail reports, or reports con-
taining groups that include headers and/or footers.

Figure 5 shows the basic design of a multi-band report that
contains four bands: an rbPageHeader, rbColumnHeader,
rbDetail, and rbPageFooter. The Header and Footer bands pro-
vide the top and bottom margins of the report, respectively.
The rbColumnHeader band is used to display the column
headings for the Detail band. Please note, however, the col-
umn headings in this case could just as easily have been placed
in the page header. The Detail band contains the fields that
will be printed for each report in the DataSet.

The page header includes the report title — a QRLabel com-
ponent. It also includes the time of report printing, which is
displayed using a QRSysData component with its Data prop-
erty set to qrsTime. The page footer also includes two compo-
nents. One is a QRLabel with its Caption property set to
Page, and the other is a QRSysData with its Data property
set to qrsPageNumber.

The QRLabel components that appear in the ColumnHeader
band are underlined. This was achieved by choosing an under-
lined font for these components. The separator lines appearing
between the fields in the Detail band are actually QRShape
components — its width was set to be very narrow. Figure 6 is
the resulting report displayed in the Report Previewer.

Conclusion
This article briefly examines some of the reporting capabili-
ties available from QuickReport reports. It only scratches the
surface. QuickReport allows you to design completely cus-
19 August 1996 Delphi Informant
tom report previewers, save report output to file for display at
a later time, create event handlers to produce enormously
flexible reports, etc. If your Delphi applications require
reports, and you’re not already committed to using
ReportSmith, you may find that QuickReport gives you
everything you need in a report generator, and more. ∆

Parts of this article are based on, or reprinted by permission,
from Delphi In Depth by Cary Jensen, Loy Anderson, Joseph
Fung, Ann Lynnworth, Mark Ostroff, Martin Rudy, and
Robert Vivrette, published by Osborne/McGraw-Hill, Inc.
Copyright 1996 by The McGraw-Hill Companies Inc. For
more information about this book, please visit the Web site
http://gramercy.ios.com/~jdsi/did.html.

The demonstration forms and report referenced in this article are
available on the Delphi Informant Works CD located in
INFORM\96\AUG\DI9608CJ.

20 August 1996 Delphi Informant

ReportSmith Secrets
Tips for Increasing Your Productivity
with Borland’s Misunderstood Reporting Tool

On the Cover
ReportSmith

By Jeff Sims
ReportSmith is misunderstood. Granted, it’s different from other report-
ing tools, so some complaints are understandable: “Why should

ReportSmith be so different?” “It has no design mode.” “It doesn’t com-
pile.” And perhaps most damning: “It’s too slow. I wait too long for the
report to format.”
But these are misperceptions. It’s true that
ReportSmith has no design mode (i.e.
those cryptic “9s” and “As” across a banded
report specification). And yes, opening a
report to modify it requires the associated
query to execute, which in turn triggers
ReportSmith to reformat the report. But
that’s just its default behavior. To open a
ReportSmith report and make a change
without triggering a query and reformat,
simply deselect the Run Report check box in
the Open Report dialog box. Presto! The
query doesn’t run until you say OK.
(Already, a secret revealed!)

So ReportSmith isn’t slow — once you
learn a few secrets. Which is what this arti-
cle is all about.

More than anything else, ReportSmith suf-
fers from an image problem. And it’s my
contention that if you would take the time
to learn a few tricks of the trade, you’d find
ReportSmith as useful and powerful as I do.
And frankly, I greatly prefer the WYSIWYG
“live” data approach.

I’ve culled the following “secrets” from what
I keep promising as the soon-to-be pub-
lished book, Report Writers Explained
[Prentice Hall]. These techniques will help
you better understand ReportSmith and
increase your Delphi reporting productivity.
Secret 1: Make Sure You’ve Got the
Horsepower
Are you trying to run ReportSmith on a 386-
based system with 4MB of RAM? For the
record, ReportSmith is not a low-end product.
Period. Sure, ReportSmith is bundled with
almost every version of Delphi (except for
Delphi 2 Desktop), and one of Delphi’s
strengths is its ability to create a lean, mean
executable that can run on yesterday’s hard-
ware. ReportSmith, however, needs a modern
processor and lots of memory to perform well.

If your clients want reports that involve
complexity, ReportSmith is the tool that will
allow you to deliver the product. You will
need at least 12MB of RAM and a 486
processor. (Alternatively, Delphi 2 now ships
with QuickReport if you want to create a
simple, lightning-fast, executable report.) If
you’re short of RAM, try to free some mem-
ory (e.g. unload unnecessary programs, etc.).
If, however, you are calling ReportSmith
(even RunTime) from a Delphi application,
you probably want 16MB of RAM.

Now let’s consider the choice of the operating
system (OS). With a 32-bit OS, ReportSmith
3.0 (it will not run on Windows 3.x) can
truly multi-task. Periodically, the DBMS will
take a while to respond to your query. So if
you have enough memory (i.e. 32MB), then
run Windows/NT. Otherwise, Windows 95 is

On the Cover
a better choice than Windows 3.x. Remember, both Windows
NT and Windows 95 will use every last byte of memory
(Note that Windows 3.x can only use 16MB). So, get off to a
good start with adequate resources and a robust multi-tasking
operating system.

In brief, don’t believe what it says on the box. To run
ReportSmith, I recommend a Pentium-based system run-
ning 32-bit Windows with plenty of RAM (16MB for
Windows 95 and 32MB for Windows NT). In addition,
you should avoid using middleware; run native drivers
instead. And, for those of you accessing dBASE files, don’t
forget to create indices on columns used in joins.

Secret 2: Draft and Presentation
I’m amazed at how often I encounter users and developers
who don’t take advantage of ReportSmith’s Draft mode.
21 August 1996 Delphi Informant

Figure 1: Enable Draft mode at the
Create New Report dialog box.
Let’s say you are creat-
ing a new report in
ReportSmith 3.0.
After selecting File |

New, the Create New
Report dialog box
appears. It allows you
to select the type of
report you want to
create. To enable Draft
mode, check the Draft

mode box in the lower

Figure 3 (Top): This design-time report shows the Draft water-
mark. Figure 4 (Bottom): This columnar report is shown in
Column editing mode. The selected data from the SIZE column
can now be moved horizontally.
left corner of the screen (see Figure 1).

While you’re designing your report, you can also enable
Draft mode by selecting View | Draft from ReportSmith’s
main menu. You can then switch to Presentation mode —
by selecting View | Presentation — to check the final
appearance of the report as it will be printed.
Figure 2: The Draft
Mode Options dialog
box.
The Draft Mode Options dialog box
(see Figure 2) lets you control the
number of records to display, and
whether to show “placeholder” out-
lines for graphic images. Reducing the
volume of data (number of records)
and showing light gray outlines
instead of the graphic image(s)
improves your system’s performance as
you create and modify your report. As
you’re working in Draft mode,
ReportSmith will include the “Draft”
watermark as a reminder (see Figure 3).
A correctable problem (specific to ReportSmith 3.0) occurs
when ReportSmith RunTime is used with a report created in
Draft mode — the Draft watermark continues to appear. The
solution is to open the report, select View | Presentation to place
the report in Presentation mode, and then save it. Now, subse-
quent RunTime operation will not include the watermark.
Secret 3: Column Editing and Form (Field) Editing
The next secret has to do with the arrangement of data on the
report. Let’s say you want to move various columns or fields
to different positions on your report. To move columns, you
can enable Column editing mode and relocate columns and
their labels horizontally across the report page. As you might
expect, this is the default mode for columnar reports. In addi-
tion, it’s the default mode for crosstab and label report types.
Figure 4 shows a columnar report in Column editing mode.

Form editing or Field editing mode (see Figure 5) allows you
to move individual fields (not entire columns) freely around
the report page (horizontally and vertically). Use Field editing
mode when inserting fields into headers and footers. Please
note that when moving values in Field editing mode, the asso-
ciated field labels do not automatically move along with their
respective columns. (However, if you hold down V and
click on the field and its label, you can drag both to a new
location). Field editing mode is the default for form reports.

Here’s another secret I learned the hard way: don’t switch to
Field editing mode, and then drag and drop from a column
to the header or footer. For some reason, this technique may

Figure 5: The report from Figure 4 in Field editing mode. The
selected field can be moved freely around the report.

On the Cover

Figure 6: The Report Query - Tables dialog box.
damage the report, and I know of no way to repair it. Instead
of moving the column, insert it using the Insert Field dialog
box. You can delete the column if it’s no longer necessary.

Secret 4: Don’t Push the Done Button Unless You Are
A critical (and often overlooked) part of ReportSmith is its
Report Query interface.

When developing a report, I prefer to see it with actual data
as I fine tune the formatting. The good news is that
ReportSmith is second-to-none when it comes to displaying
“live data” in a report. The bad news is that you can spend
time waiting for ReportSmith to reformat the report’s display,
after executing the query. Fortunately, you don’t have to wait
because you can enable Draft mode (as already described).

Retrieving the data and formatting the report are really
different activities. ReportSmith is designed such that cre-
ating the report query (i.e. identifying the tables, columns,
links, selection and sorting criteria; creating derived fields,
report variables, and database groups; and accessing the
actual SQL code) can be done from one dialog box.

The Report Query - Tables dialog box has seven main but-
tons across its top. By selecting the appropriate button
(labeled accordingly), you can instantly change the display
(see Figure 6). This is an excellent interface — and while
you don’t need to use every aspect — it features everything
you need for query definition. And, there’s no hesitation
between these dialog boxes.

Also, the Report Query - Tables dialog box features five other
important buttons:

Add table

Replace table

Table columns

Edit link

Add new link
22 August 1996 Delphi Informant
These provide access to additional dialog boxes. Report per-
formance, by the way, can be improved by intelligently
excluding unnecessary table columns.

Specify the query as completely as you can. Only then
should you begin work on the report’s format. Pressing the
Done button will require the query to run and ReportSmith
to format the report. The more times you access the Report
Query - Tables dialog box, the more times the query will
run and ReportSmith will reformat the report.

The bottom line? Don’t thrash between the query and the
report.

Secret 5: It’s Not Where You Go,
It’s the Named Connections
This quasi-secret is explained in the documentation (Chapter
1 of the ReportSmith 2.5 User’s Guide, or ReportSmith 3.0
Creating Reports). Since almost nobody reads the manuals,
here is my take on it.

This issue seems especially troublesome for those familiar with
Borland Database Engine (BDE) aliases, and is probably relat-
ed to ReportSmith connecting to many other sources (e.g.
DB2, Oracle, SQL Server, etc.) that do not depend on the
BDE. Its “connection model” is based on Named Connections.

The scenario typically involves a developer who creates a
report accessing Paradox tables on a development system
where the files are located in a system other than the produc-
tion system. The developer spends some time creating a
report (without a Named Connection) and finally gets it
looking the way the user wants. So the developer gives a
copy of the report (the .RPT file) to the user and — it does-
n’t work (“SQL Execution Error - Table does not exist”). The
developer then learns that without a Named Connection the
report is dependent on the file’s physical location.

Fortunately, all is not lost. The report can be fixed by replac-
ing each of the tables using the Report Query - Tables dialog
box. This report, however, is hard coded and will require

On the Cover
maintenance (i.e. replacing the tables as just described) when-
ever the location changes. The lesson is: create reports with
Named Connections.

Conclusion
ReportSmith is a powerful tool, but its fundamentally dif-
ferent design often keeps developers from taking advan-
tage of its power. Hopefully this article sheds some light
on the all-too-often hidden power of ReportSmith, and
explains some of the fundamentals that will increase
ReportSmith developer productivity. ∆
23 August 1996 Delphi Informant

Jeff Sims is a Northern California-based management and information technology
consultant. He can be reached at (415) 359-7851, or 70253.422@com-
puserve.com.

24 August 1996 Delphi Informant

Informant Spotlight
Delphi 1 / Delphi 2 / Object Pascal / Internet

By Gregory Lee

Delphi Finger
Adding Winsock Capability to Your Delphi Applications

Figure 1: A typical DelphiFinger
The Internet. The next wave in the computer revolution — or just a shoot-
ing star? The answer may well depend on programs currently being

developed. It’s an exciting time to be a software developer — potentially a
very profitable time, if you can capitalize on the promise of the Internet.
Unfortunately, the books focusing on pro-
gramming for the Internet have been writ-
ten for the C/C++ and Java communities.
The good news, however, is that you can
program for the Internet using Delphi —
you just have to be persistent. If you’ve
never used Delphi to call a DLL, nor cre-
ated a special message handler, you may
think Winsock programming is a complex
— perhaps even insurmountable — task.

Take your time. Read the information
thoroughly to get a broad understanding
of the topic. Then reread any portions that
remain unclear to you. If you need a more
thorough explanation of implementation
details, you can always refer to your
Delphi manuals. Above all, stick with it.
In the end you’ll be glad you made the
effort.

DelphiFinger
Perhaps the best way to learn any program-
ming technique is by example. So let’s dive
right in with one of the simpler Internet
session.
programs — a Finger
client. Simply put, the
Finger protocol allows
you to obtain basic
information about
another Internet user.
Supply the Finger
client with a valid
Internet e-mail
address, and the pro-
gram locates the host system, connects to
the Finger server, sends it the user’s name,
and displays the reply. The process is similar
to making a phone call, and an effective
way to visualize the process. Figure 1 shows
the results of a typical DelphiFinger session.

Before we delve into this implementation of
Finger, a caveat is in order: Finger is an
optional Internet service that many of the
large online services, and some private
Internet providers, have decided not to
offer. For example, if you enter a
CompuServe or an America Online e-mail
address you may receive a message such as
“Connection refused.” In fact, you may not
receive any reply. The most likely reason for
this is that the system’s administrator sees
the Finger service as a potential security
problem. Rather than limiting the amount
of information available, the administrator
simply decided not to offer it.

For a complete description of the Finger pro-
tocol, I recommend you read RFC 1288,
“The Finger User Information Protocol” by
D. Zimmerman (see Figure 2). RFC is the
acronym for Request For Comment, and virtu-
ally every Internet standard is documented
somewhere in an RFC file. Here are some
Web sites containing indexes you can browse
to find RFC documents:

http://www.rasip.etf.hr/rfc/rfc.1.html
http://www.neda.com
http://www.rfc-index.html

Figure 2: The Web site, www.neda.com, contains an index to all
RFC documents.

Informant Spotlight
The Windows Sockets Library
Winsock is the Windows version of the original Berkeley
sockets interface. The sockets interface was developed to pro-
vide a simple application programming interface (API) for
network applications based on the TCP/IP network protocol.

You don’t need to understand what the TCP/IP protocol is or
how it works to use Winsock. However, you do need
WINSOCK.DLL and a basic knowledge of the functions avail-
able. In this article, we’ll touch on some of the commonly used
functions with enough explanation to get you started. For a
more detailed description and a complete list of the functions
available, you should consult the Windows Sockets Specification.
This document is available on the Internet in Windows Help
file format, HTML, and a variety of other common formats.

Because Winsock is a normal DLL, you can access its func-
tions as you would with any other DLL — either declare the
functions as “externals” and let Delphi handle the details, or
use the LoadLibrary and GetProcAddress functions to do it
yourself. The trick, of course, is knowing which of Winsock’s
44 functions to use and when to use them.

In our DelphiFinger project, WINSOCK.PAS contains all the
Winsock function prototypes, and the WINSOCK.DLL index
numbers for these functions (see Listing One on page 29). The
included file for Delphi 2 users is WSOCK32.PAS. Although
most of the functions aren’t used, they’ve all been included in
WINSOCK.PAS so you can use that file in future projects with-
out having to worry about adding new prototypes. You will also
notice many Winsock constants, record types, and error messages
have also been defined in WINSOCK.PAS and WSOCK.PAS.

If you’re using Delphi 2, please see “A Note to Delphi 2
Users” on page 26. This sidebar outlines considerations for
those using the 32-bit version of Delphi.

Getting Started
In a typical DelphiFinger session the user enters an Internet
25 August 1996 Delphi Informant
user name and host name and then clicks on the Connect
button. This is our cue to initiate the Finger conversation.
Before we can do anything useful with the Winsock library,
however, we have to call the WSAStartup function:

function WSAStartup(Version: Word;
WSDataAddr: PWSAData): Integer;

WSAStartup takes two arguments: the first indicates the version
of Windows Sockets you’re looking for, and the second is the
address of a TWSAData record buffer. The TWSAData record is
a special structure defined in the Windows Sockets Specification.
It’s used by the WSAStartup function to store information about
the version of WINSOCK.DLL you’re using.

Whether you’re interested in the information returned in the
TWSAData record or not (and we’re not), you still have to
call WSAStartup before calling any other Winsock function.
If an error occurs, WSAStartup will return an error code. A
return value of zero indicates success.

Searching for the Host Address
We now know Winsock is alive and well, so we can begin
the process to locate the remote system and Finger server. To
accomplish this we use the Winsock function,
WSAAsyncGetHostByName. Don’t be intimidated by its long
name; although it’s a mouthful, WSAAsyncGetHostByName is
a fairly simple function. Given the name of a host system,
WSAAsyncGetHostByName searches for that system’s IP
address; you can compare it to calling directory assistance to
find a telephone number.

The Async part of this function’s name refers to the fact that
the task is performed in the background. When we call
WSAAsyncGetHostByName, it initiates the task but returns
before the job is done. Winsock will inform the user when the
task has completed and the information is ready. This is very
convenient because locating the host system’s IP address could
be time consuming. If the search takes too long, the person
using the Finger client may think the program has locked up.

A major benefit of asynchronous processing is that the sys-
tem can do other things while it’s waiting. Remember,
Windows is a cooperative multi-tasking system. Calling
functions that “take over” the system for an extended period
of time is not just bad manners — it violates the prime
directive of this operating system.

WSAAsyncGetHostByName takes five parameters:

function WSAAsyncGetHostByName(Window: HWnd;
Msg: Word;
Name: PChar;
Host: PHostInfo;
Size: Integer): THandle;

1) The handle of the window you want Winsock to notify
when the process is finished.

2) The message you want Winsock to use when it calls you
back. Unless you’re writing Delphi components, you gen-

Some minor changes are required to make DelphiFinger work
with Delphi 2:

Since the size of the Integer data type in Delphi has increased
from 16- to 32-bits, all the integers used in the WINSOCK
records and function prototypes must be changed to the new
type Smallint. Items already declared as Smallint or Longint
should be left as they are.
Because the 32-bit version of WINSOCK is called
WSOCK32, this name must be changed in each DLL func-
tion prototype.
The default Delphi calling convention has been changed.
This means you must add the stdcall declaration to the end
of each DLL function prototype.
Delphi 2 now includes a WINSOCK.PAS unit. Therefore,
you should rename the WINSOCK.PAS file included to
WSOCK32.PAS and make the corresponding change to the
uses section of FINGER.PAS.

— Gregory Lee

A Note to Delphi 2 Users

Informant Spotlight
erally don’t need to worry about window handles and
message numbers. Rest assured, however, Delphi is keep-
ing track of all this stuff and you can access it if you really
want to. In our example, we want Winsock to call us
back through the main form and we’ll create a new mes-
sage number for it to use.

3) The name of the host we’re trying to find.
4) A pointer to the record where Winsock can store the host

information.
5) The record’s size.

Like the TWSAData record used with WSAStartup, the
THostInfo record is based on a special structure defined in
the Windows Sockets Specification. This record is used by
WSAAsyncGetHostByName to store information about a
host system.

If you check the Windows Sockets Specification, you’ll notice
that our THostInfo record doesn’t quite match the original
hostent structure. Specifically, a 1K buffer has been added at
the end because Winsock needs some extra room to store the
data to which the other members of the structure will point.

As long as WSAAsyncGetHostByName doesn’t immediately
run into a brick wall, the function will return a handle for
the new task. If the handle is nil, something went wrong.
We’re dead in the water and the only thing left to do is
report the error. Luckily, Winsock provides a function to
determine exactly what went wrong — WSAGetLastError.
It takes no arguments and simply returns an error code cor-
responding to the last Winsock function called. In the
DelphiFinger function WinsockError, this error code is used
to find an appropriate message string and display the error
to the user.

For now, let’s assume everything has performed without a
hitch: WSAStartup returned cleanly and our
WSAAsyncGetHostByName call returned something other than
nil. Now what?

We wait.

Somewhere in the background the wheels are turning.
Eventually, the host name lookup will finish and Winsock will
tell us the result. We’ll intercept the message with a special
message handler, check out the new IP address, and proceed to
the next step.

There’s more than one way to create a message handler in
Delphi. The simplest way, however, is to create the procedure
somewhere in the program’s body. Then, you declare the proce-
dure, along with the message it will intercept, in the protected
section of the form’s definition. In this case the message will be
returned to Form1, so that’s where we’ve placed the declaration.

Message handlers always receive a record structure con-
taining the wParam and lParam values associated with a
typical Windows message callback. For Winsock lookup
26 August 1996 Delphi Informant
functions, wParam contains the task handle returned by
the original function call and the high word of lParam
indicates the task completion status. If the
WSAAsyncGetHostByName task succeeds, the status code is
zero and our record will contain at least one IP address for
the host system.

Locating the Finger Server
Great! We have the host system’s IP address. Now we need to
find the location of the Finger server. In our phone call anal-
ogy, this step is similar to using a company directory to find
an extension number. To accomplish this, we use the
Winsock function WSAAsyncGetServByName:

function WSAAsyncGetServByName(Window: HWnd;
Msg: Word;
ServiceName: PChar;
ProtocolName: PChar;
Server: PServerInfo;
Size: Integer): THandle;

As you’ve probably already guessed, WSAAsyncGetServByName
is another callback function and takes six parameters. The first
two are a window handle and a message value. The third and
fourth parameters are strings indicating the name of the ser-
vice we’re interested in, and the name of the underlying proto-
col (in this case the values should be finger and tcp). The
fifth parameter is the address of a record where Winsock can
store the server information, and the sixth parameter indicates
the record’s size.

As was the case with THostInfo, the TServerInfo record is based
on a special structure defined in the Windows Sockets
Specification. WSAAsyncGetServByName uses this record to store
information about a server. Again we’ve added a 1K buffer to
the end of the record for Winsock to store the data it collected.

When the function call is made, WSAAsyncGetServByName
sets the new task in motion and quickly returns. Just as
Winsock did with the previous function,

Informant Spotlight

An Internet Glossary
Address Describes the format of an Internet address.
Format The only address format currently supported by

Winsock is the ARPA Internet address format.

Client An application that initiates a connection and
communicates with a server.

HTML Hypertext Markup Language. The language
used to create pages on the World Wide Web.
Many public domain documents and
specifications are currently available in this
format.

IP Address A number used to locate a user or service on
the Internet. In the current specification, this is
a 32-bit number and is commonly displayed in
dotted decimal notation. Dotted decimal nota-
tion disseminates the address into individual
bytes and lists the decimal equivalent of each
byte. For example, the IP address $FFFF0001 is
represented in dotted decimal form as
255.255.0.1.

Server An application that provides a service; it does not
generally initiate connections. Instead, the server
waits at a well-known location and waits
for client applications to connect with it.

Socket The line of communication used on the Internet
to communicate with another user or service.

TCP/IP Transmission Control Protocol/Internet Protocol.
This is the basic, underlying protocol suite used
to control the flow of information over the
Internet. For a detailed description see the
documents RFC793 (TCP) and RFC791 (IP).

Winsock The Windows implementation of the original
Berkeley sockets interface.

WINSOCK.DLL The library containing the functions described
in the Windows Socket Specification.

WSOCK32.DLL The 32-bit version of WINSOCK.DLL.
WSAAsyncGetServByName will send a message to our form
when the task is complete and we’ll have another special mes-
sage handler waiting to intercept it.

Making the Call
At this point we know the location of the host’s address and
where to find the Finger server. Of course, before we can
actually communicate with the Finger server, we must open a
line for communication.

In Winsock, this process requires three steps. Creating the sock-
et itself is accomplished by calling the Winsock function socket:

function socket(AddressFormat: Integer;
SocketType: Integer;
Protocol: Integer): Integer;

The socket function takes three parameters: the address family,
communication type, and the protocol to use with the new
socket. For this application (and just about any other you’ll
probably write), we use the Internet address family, creating a
stream type socket, and using the TCP protocol. For each of
these arguments, constant values are defined in
WINSOCK.PAS, and, as you can see, we’re using them in the
call to socket. If the socket function is successful, it returns a valid
socket handle. Otherwise, it returns INVALID_SOCKET.

Before we can place the call, we must tell Winsock to handle
this socket 100 percent asynchronously. The Winsock func-
tion designed for this purpose is WSAAsyncSelect:

function WSAAsyncSelect(Socket: THandle;
Window: HWnd;
Msg: Word;
Event: LongInt): Integer;

WSAAsyncSelect takes four parameters: the socket descriptor;
the handle of the window that should receive notification
messages; the message we want Winsock to use; and an event
bitmask specifying the events we want handled in this way.

There Can Be Only One
Notice that although WSAAsyncSelect can apply to various
operations — connecting, reading, writing, closing the sock-
et, etc. — you can only specify a single callback message.
This means that from this point, only one message handling
procedure can handle all the messages.

You might guess that by calling WSAAsyncSelect a number of
times, passing a different message and event bitmask pair
each time, you could configure a whole series of message han-
dling procedures tied to different events — this sounds logi-
cal. Unfortunately, that’s not the way it works.

Each call to WSAAsyncSelect completely resets the status of the
socket’s event handler. For example, if you call WSAAsyncSelect
once with the event bitmask set for read events and then
immediately call it a second time with the event bitmask set
for write events, the second call will reset the event handler
and only write events will be handled asynchronously.
27 August 1996 Delphi Informant
Which Is Which?
If we can’t assign separate event handlers for the different oper-
ations, how do we distinguish callbacks? When a Winsock
makes a notification call, a portion of the record it passes to
our callback routine contains the bitmask corresponding to the
reason for the callback. For example, when incoming data is
waiting and ready to be received, the bitmask passed into our
callback routine will contain the constant value FD_READ.

Making the Connection
We’ve set the stage with WSAAsyncSelect. Now we’re ready to
place the call. The Winsock function connect is designed to
do just that:

function connect(Socket: THandle;
Address: PSocketAddress;
Size: Integer): Integer;

The connect function takes three parameters:
1) our socket handle
2) the address of a TSocketAddress record
3) the size of the TSocketAddress record

The TSocketAddress record is based on a special structure
defined in the Windows Sockets Specification. The address
member is the IP address we want to connect to and the port
number is the Finger server’s port number. When connect is
called, the process is initiated and it returns immediately with

Informant Spotlight

Gregory Lee is a programmer with over 15 years of experience writing applications
and development tools. He is currently the president of Software Avenue Inc.,
which has just released a package for Delphi developers called the “Internet
Developer’s Kit” (see the “Tools” section of the June 1996 Delphi Informant).
Greg can be reached by e-mail at 76455.3236@compuserve.com.
an error code or a zero. A zero indicates the task has been
started. Eventually, we’ll receive a message indicating whether
connect has succeeded.

When the call goes through, Winsock sends the message
MsgAsyncEvent to Form1 and the low word of lParam con-
tains the constant FD_CONNECT. It’s now time to commu-
nicate with the Finger server.

Hangin’ on the Telephone
The Finger server’s job is pretty boring — it just sits there,
listening and waiting for someone to call. Periodically, the
phone rings and the Finger server picks up the line. To save
time and keep things simple, the Finger server doesn’t both-
er saying “Hello.” The client is responsible for keeping
things going by sending a query to the server. The query in
this case is just the name of the user we’re interested in, fol-
lowed by a carriage return and linefeed characters.

The Winsock function for sending our query is called send:

function send(Socket: THandle;
Buffer: PChar;
Size: Integer;
Flags: Integer): Integer;

The send function requires the socket descriptor, a pointer
to the message we want to send, the message’s length, and
an options flag. If everything looks good, send starts the
task and returns immediately. If something goes drastically
wrong, send returns an error message. Eventually, when the
task is complete, our message handler receives yet another
callback.

This time Winsock sends Form1 another MsgAsyncEvent mes-
sage. Now, however, the low word of lParam will contain
FD_WRITE. Since there is no additional data to send, we’ll
ignore the FD_WRITE callback.

It’s up to the Finger server on the host system to process the
query and send us a reply. When the reply arrives, we receive
another MsgAsyncEvent message. This time the low word of
lParam contains FD_READ. The Winsock function recv is
used to obtain the reply:

function recv(Socket: THandle;
Buffer: PChar;
Size: Integer;
Flags: Integer): Integer;
28 August 1996 Delphi Informant
Closing the Connection
We have the reply and are now done talking with the
Finger server. It’s time to hang up the phone. Typically, the
Finger server will hang up its end of the line before we’ve
even had a chance to process all the data it’s sent. When
that happens, we receive an MsgAsyncEvent message for the
FD_CLOSE event and, after we’ve handled any remaining
data in the buffer, we can close our end of the connection.

Winsock provides the function, closesocket, to close the line and
free all the resources associated with the socket. If it’s successful,
closesocket returns zero. If not, it returns SOCKET_ERROR.

Even if closesocket works, we’re still not quite off the hook.
There’s one last function we’re obligated to call: WSACleanup.
This function de-registers the Finger client and allows Winsock
to release any resources it has allocated on our behalf.

Conclusion
At this point you might be thinking, “If DelphiFinger is
one of the simplest Internet applications, I don’t even
want to know what’s involved in creating something like
an e-mail client.” Our little Finger client is one of the
more basic Internet applications, but it uses many of the
core Winsock functions. On the surface, an e-mail or FTP
client may seem exponentially more complex, but from a
programming standpoint, it’s really not. Once you under-
stand the fundamentals, writing Internet applications in
Delphi is not very difficult. ∆

The demonstration files referenced in this article are available on
the Delphi Informant Works CD located in
INFORM\96\AUG\DI9608GL.

2

Informant Spotlight
Begin Listing One — WINSOCK.PAS
unit Winsock;

interface

uses
WinTypes, WinProcs, Messages;

const
{ New messages for asynchronous callbacks }
MsgHostInfoReady = WM_USER+0;
MsgServerInfoReady = WM_USER+1;
MsgAsyncEvent = WM_USER+2;

{ Event bitflags defined in
Windows Sockets Specification }

FD_READ = 1;
FD_WRITE = 2;
FD_OOB = 4;
FD_ACCEPT = 8;
FD_CONNECT = 16;
FD_CLOSE = 32;
FD_ALL = 63;

{ Socket types currently supported }
SOCK_STREAM = 1;
SOCK_DGRAM = 2;

{ Socket option values }
SO_DEBUG = 1;
SO_ACCEPTCONN = 2;
SO_REUSEADDR = 4;
SO_KEEPALIVE = 8;
SO_DONTROUTE = 16;
SO_BROADCAST = 32;

SO_USELOOPBACK = 64;
SO_LINGER = 128;
SO_OOBINLINE = 256;
SO_DONTLINGER = 65407;
SO_SNDBUF = 4097;
SO_RCVBUF = 4098;
SO_SNDLOWAT = 4099;
SO_RCVLOWAT = 4100;
SO_SNDTIMEO = 4101;
SO_RCVTIMEO = 4102;
SO_ERROR = 4103;
SO_TYPE = 4104;

{ Protocol ID numbers }
IPPROTO_IP = 0;
IPPROTO_ICMP = 1;
IPPROTO_GGP = 2;
IPPROTO_TCP = 6;
IPPROTO_PUP = 12;
IPPROTO_UDP = 17;
IPPROTO_IDP = 22;
IPPROTO_ND = 77;
IPPROTO_RAW = 255;
IPPROTO_MAX = 256;

{ Other WINSOCK constants }
AF_INET = 2;
INVALID_SOCKET = -1;
SOCKET_ERROR = -1;
INADDR_ANY = 0;
MAXGETHOSTSTRUCT = 1024;
SHUTDOWN_RECV = 0;
SHUTDOWN_SEND = 1;
SHUTDOWN_BOTH = 2;
9 August 1996 Delphi Informant
type
{ New basic pointer types }
PPChar = ^PChar;
PInteger = ^Integer;
PLongInt = ^LongInt;
PPLongInt = ^PLongInt;

{ Record types used by WINSOCK functions }
TWSAData = record

Version: Word;
HighVersion: Word;
Description: array[0..255] of char;
Status: array[0..127] of char;
MaxSockets: ShortInt;
MaxUdpDatagramSize: ShortInt;
VendorInfo: PChar;

end;

THostInfo = record
Name : PChar;
AliasList : PPChar;
AddressType : Integer;
AddressSize : Integer;
AddressList : PPLongInt;
Reserved: array[1..MAXGETHOSTSTRUCT] of char;

end;

TServerInfo = record
Name : PChar;
Aliases : PPChar;
Port : Integer;
Protocol : PChar;
Reserved: array[1..MAXGETHOSTSTRUCT] of char;

end;

TProtocolInfo = record
Name : PChar;

Aliases : PPChar;
ProtocolID: Integer;
Reserved: array[1..MAXGETHOSTSTRUCT] of char;

end;

TSocketAddress = record
Family: Integer;
Port: Word;
Address: LongInt;
Unused: array[1..8] of char;

end;

TSocketList = record
Count: Integer;
DescriptorList: array[1..64] of Integer;

end;

TTimeValue = record
Sec: LongInt;
uSec: LongInt;

end;

{ New WINSOCK pointer types }
PWSAData = ^TWSAData;
PHostInfo = ^THostInfo;
PServerInfo = ^TServerInfo;
PProtocolInfo = ^TProtocolInfo;
PSocketAddress = ^TSocketAddress;
PSocketList = ^TSocketList;
PTimeValue = ^TTimeValue;

Informant Spotlight
{ Special type for WINSOCK error table }
TErrorMessage = record

ErrorCode: Integer;
Text: String[50];

end;

const
{ Message table — maps WINSOCK error codes to

messages strings }
WinsockMessage: array[0..50] of TErrorMessage = (

(ErrorCode:10004; Text:'Interrupted system call'),
(ErrorCode:10009; Text:'Bad file number'),
(ErrorCode:10013; Text:'Permission denied'),
(ErrorCode:10014; Text:'Bad address'),
(ErrorCode:10022; Text:'Invalid argument'),
(ErrorCode:10024; Text:'Too many open files'),
(ErrorCode:10035; Text:'Operation would block'),
(ErrorCode:10036; Text:'Operation now in progress'),
(ErrorCode:10037;

Text:'Operation already in progress'),
(ErrorCode:10038;

Text:'Socket operation on non-socket'),
(ErrorCode:10039; Text:'Destination address required'),
(ErrorCode:10040; Text:'Message too long'),
(ErrorCode:10041;

Text:'Wrong protocol type for socket'),
(ErrorCode:10042; Text:'Bad protocol option'),
(ErrorCode:10043; Text:'Protocol not supported'),
(ErrorCode:10044; Text:'Socket type not supported'),
(ErrorCode:10045;

Text:'Operation not supported on socket'),
(ErrorCode:10046; Text:'Protocol family not supported'),
(ErrorCode:10047; Text:

'Address family not supported by protocol family'),
(ErrorCode:10048; Text:'Address already in use'),
(ErrorCode:10049;

Text:'Can''t assign requested address'),
(ErrorCode:10050; Text:'Network is down'),
(ErrorCode:10051; Text:'Network is unreachable'),
(ErrorCode:10052;

Text:'Network dropped connection or reset'),
(ErrorCode:10053;

Text:'Software caused connection abort'),
(ErrorCode:10054; Text:'Connection reset by peer'),
(ErrorCode:10055; Text:'No buffer space available'),
(ErrorCode:10056; Text:'Socket is already connected'),
(ErrorCode:10057; Text:'Socket is not connected'),
(ErrorCode:10058;

Text:'Can''t send after socket shutdown'),
(ErrorCode:10059;

Text:'Too many references, can''t splice'),
(ErrorCode:10060; Text:'Connection timed out'),
(ErrorCode:10061; Text:'Connection refused'),
(ErrorCode:10062;

Text:'Too many levels of symbolic links'),
(ErrorCode:10063; Text:'File name too long'),
(ErrorCode:10064; Text:'Host is down'),
(ErrorCode:10065; Text:'No route to Host'),
(ErrorCode:10066; Text:'Directory not empty'),
(ErrorCode:10067; Text:'Too many processes'),
(ErrorCode:10068; Text:'Too many users'),
(ErrorCode:10069; Text:'Disc quota exceeded'),
(ErrorCode:10070; Text:'Stale NFS file handle'),
(ErrorCode:10071;

Text:'Too many levels of remote in path'),
(ErrorCode:10091;

Text:'Network subsystem is unavailable'),
(ErrorCode:10092;

Text:'Incompatible version of WINSOCK.DLL'),
(ErrorCode:10093;

Text:'Successful WSAStartup not yet performed'),
30 August 1996 Delphi Informant
(ErrorCode:11001; Text:'Host not found'),
(ErrorCode:11002;

Text:'Non-Authoritative Host not found'),
(ErrorCode:11003; Text:'Non-Recoverable error: FORMERR,

REFUSED, NOTIMP'),
(ErrorCode:11004; Text:'Valid name,

no data record of requested type'),
(ErrorCode:0; Text:'Unrecognized error code')

);

{ Prototypes for WINSOCK.DLL functions listed
alphabetically }

function accept(Socket: THandle; Address: PSocketAddress;
Size: Integer): Integer;

function bind(Socket: THandle; Address: PSocketAddress;
Size: Integer): Integer;

function closesocket(Socket: THandle): Integer;
function connect(Socket: THandle;

Address: PSocketAddress; Size: Integer): Integer;
function gethostbyaddr(Address: PLongInt; Size: Integer;

AddressFamily: Integer): PHostInfo;
function gethostbyname(Name: PChar): PHostInfo;
function gethostname(Name: PChar;

Size: Integer): Integer;
function getpeername(Socket: THandle;

Peer: PSocketAddress; Size: PInteger): Integer;
function getprotobynumber(

ProtocolID: Integer): PProtocolInfo;
function getprotobyname(Name: PChar): PProtocolInfo;
function getservbyport(Port: Integer;

Protocol: PChar): PServerInfo;
function getservbyname(Name: PChar;

Protocol: PChar): PServerInfo;
function getsockname(Socket: THandle;

Address: PSocketAddress; Size: PInteger): Integer;
function getsockopt(Socket: THandle; Level: Integer;

OptionFlag: Integer; OptionValue: PChar;
Size: PInteger): Integer;

function htonl(Address: LongInt): LongInt;
function htons(Address: Integer): Integer;
function inet_addr(IP: PChar): LongInt;
function inet_ntoa(Address: LongInt): PChar;
function ioctlsocket(Socket: THandle; Command: LongInt;

var Argument): Integer;
function listen(Socket: THandle;

BackLog: Integer): Integer;
function ntohl(Address: LongInt): LongInt;
function ntohs(Address: Integer): Integer;
function recv(Socket: THandle; Buffer: PChar;

Size: Integer; Flags: Integer): Integer;
function recvfrom(Socket: THandle; Buffer: PChar;

Size: Integer; Flags: Integer;
Address: PSocketAddress; Size: PInteger): Integer;

function select(Unused: Integer; ReadList: PSocketList;
WriteList: PSocketList; CheckList: PSocketList;
TimeOut: PTimeValue): LongInt;

function send(Socket: THandle; Buffer: PChar;
Size: Integer; Flags: Integer): Integer;

function sendto(Socket: THandle; Buffer: PChar;
Size: Integer; Flags: Integer;
Address: PSocketAddress;
AddressSize: Integer): Integer;

function setsockopt(Socket: THandle; Level: Integer;
OptionFlag: Integer; NewValue: PChar;
Size: Integer): Integer;

function shutdown(Socket: THandle;
Options: Integer): Integer;

function socket(AddressFormat: Integer;
SocketType: Integer; Protocol: Integer): Integer;

function WSAAsyncGetHostByAddr(Window: HWnd; Msg: Word;
Address: PLongInt; Size: Integer;
ProtocolFamily: Integer; Host: PHostInfo;

Informant Spotlight
Size: Integer): THandle;
function WSAAsyncGetHostByName(Window: HWnd; Msg: Word;

Name: PChar; Host: PHostInfo; Size: Integer): THandle;
function WSAAsyncGetProtoByName(Window: HWnd; Msg: Word;

ProtocolName: PChar; Protocol: PProtocolInfo;
Size: Integer): THandle;

function WSAAsyncGetProtoByNumber(Window: HWnd;
Msg: Word; ProtocolID: Integer;
Protocol: PProtocolInfo; Size: Integer): THandle;

function WSAAsyncGetServByName(Window: HWnd; Msg: Word;
ServiceName: PChar; ProtocolName: PChar;
Server: PServerInfo; Size: Integer): THandle;

function WSAAsyncGetServByPort(Window: HWnd; Msg: Word;
Port: Integer; ProtocolName: PChar;
Server: PServerInfo; Size: Integer): THandle;

function WSAAsyncSelect(Socket: THandle; Window: HWnd;
Msg: Word; Event: LongInt): Integer;

function WSACancelAsyncRequest(
TaskHandle: THandle): Integer;

function WSACancelBlockingCall: Integer;
function WSACleanup: Integer;
function WSAGetLastError: Integer;
function WSAIsBlocking: Boolean;
function WSASetBlockingHook(

BlockingFunction: TFarProc): TFarProc;
procedure WSASetLastError(ErrorCode: Integer);
function WSAStartup(Version: Word;

WSDataAddr: PWSAData): Integer;
function WSAUnhookBlockingHook: Integer;

implementation

{ External directives WINSOCK.DLL routines listed by
index number }

function accept; external 'WINSOCK' index 1;
function bind; external 'WINSOCK' index 2;
function closesocket; external 'WINSOCK' index 3;
function connect; external 'WINSOCK' index 4;
function getpeername; external 'WINSOCK' index 5;
function getsockname; external 'WINSOCK' index 6;
function getsockopt; external 'WINSOCK' index 7;
function htonl; external 'WINSOCK' index 8;
function htons; external 'WINSOCK' index 9;
function inet_addr; external 'WINSOCK' index 10;
function inet_ntoa; external 'WINSOCK' index 11;
function ioctlsocket; external 'WINSOCK' index 12;
function listen; external 'WINSOCK' index 13;
function ntohl; external 'WINSOCK' index 14;
function ntohs; external 'WINSOCK' index 15;
function recv; external 'WINSOCK' index 16;
function recvfrom; external 'WINSOCK' index 17;
function select; external 'WINSOCK' index 18;
31 August 1996 Delphi Informant
function send; external 'WINSOCK' index 19;
function sendto; external 'WINSOCK' index 20;
function setsockopt; external 'WINSOCK' index 21;
function shutdown; external 'WINSOCK' index 22;
function socket; external 'WINSOCK' index 23;
function gethostbyaddr; external 'WINSOCK' index 51;
function gethostbyname; external 'WINSOCK' index 52;
function getprotobyname; external 'WINSOCK' index 53;
function getprotobynumber;
external 'WINSOCK' index 54;

function getservbyname;
external 'WINSOCK' index 55;

function getservbyport;
external 'WINSOCK' index 56;

function gethostname;
external 'WINSOCK' index 57;

function WSAAsyncSelect;
external 'WINSOCK' index 101;

function WSAAsyncGetHostByAddr;
external 'WINSOCK' index 102;

function WSAAsyncGetHostByName;
external 'WINSOCK' index 103;

function WSAAsyncGetProtoByNumber;
external 'WINSOCK' index 104;

function WSAAsyncGetprotoByName;
external 'WINSOCK' index 105;

function WSAAsyncGetServByPort;
external 'WINSOCK' index 106;

function WSAAsyncGetServByName;
external 'WINSOCK' index 107;

function WSACancelAsyncRequest;
external 'WINSOCK' index 108;

function WSASetBlockingHook;
external 'WINSOCK' index 109;

function WSAUnhookBlockingHook;
external 'WINSOCK' index 110;

function WSAGetLastError;
external 'WINSOCK' index 111;

procedure WSASetLastError;
external 'WINSOCK' index 112;

function WSACancelBlockingCall;
external 'WINSOCK' index 113;

function WSAIsBlocking;
external 'WINSOCK' index 114;

function WSAStartup;
external 'WINSOCK' index 115;

function WSACleanup;
external 'WINSOCK' index 116;

end.
End Listing One

32 August 1996 Delphi Informant

OP Tech
Delphi / Object Pascal / Windows Help

By Keith Wood

Completing the Component
Adding Property Editors and Online Help to TLabelEffect
Last month we extended the TLabel3D component to make it more flexi-
ble and enable it to be rotated [see Keith Wood’s article “3-D Labels

with a Twist” in the July 1996 Delphi Informant]. (The original TLabel3D
component was introduced by Jim Allen and Steve Teixeira in the June
1995 issue of Delphi Informant in their article “A 3-D Label Component.”)
The result was the TLabelEffect component. As promised, this month we’ll
finish the component production cycle by providing property editors for two
of its properties and by adding Help to the component.
Property editors provide a graphical way of
changing a property’s value. Delphi has
many examples, including the Font and
Color dialog boxes. In this article, we’ll
examine ways of prototyping an editor
before configuring it for use.

An integrated Help file enables users to get
information when they need it. A Help tem-
plate is provided with this article for use with
other components, and includes the appro-
priate styles and images to blend with
Delphi’s Help system.

Graphical Editing
Adding a property editor to a component is
easy, and provides a simple way to modify
the value of the property.

The basic requirement of a property editor is
that it takes the current value of a particular
property, and displays it visually. It must
then allow changes to the property to be
transferred back to the component.

The Delphi documentation covering property
editors is relatively sparse (pages 38-43 of the
Component Writer’s Guide), with the online
Help simply duplicating the text in the book.
With a bit of experimentation, however, this
is enough to produce what we want.

Typically, a property editor is supplied for
those properties that have a visual content.
In our case, we are writing editors for the
EffectStyle and ColourScheme properties in
our TLabelEffect component. Since these
editors are similar, we’ll examine only the
EffectStyle editor in detail.

Before generating the property editor itself,
we’ll construct a prototype of the final prod-
uct to ensure it works properly.

In this case, our property editor is simply a
dialog box. To communicate with this dialog
box, it must have a value that we can initially
set and later read. (Sounds like a property!)

Looking at the declaration of the form, we
can see that it’s a class derived from TForm.
Components are also classes, and have
properties, so we should be able to add our
property to the form in the same way.
First, we create a new form, setting its
BorderStyle property to bsDialog, and chang-

Figure 1: The write method for the EffectStyle property.

{ Set the EffectStyle property of the form and highlight
appropriate label }

procedure TEffectStylePropEd.SetEffectStyle(
EsStyle: TEffectStyle);

var
i: Integer;

begin
if FEffectStyle <> EsStyle then

begin
FEffectStyle := EsStyle;
for i := 0 to ComponentCount -1 do

if Components[i] is TLabelEffect then
with Components[i] as TLabelEffect do

Transparent := (EffectStyle <> EsStyle);
end;

end;

Figure 2: Invoking the prototype EffectStyle property editor.

procedure TForm1.BtnEffectStyleClick(Sender: TObject);
var

EffectStylePropEd: TEffectStylePropEd;
begin

{ Create a dialog box as defined elsewhere }
EffectStylePropEd :=

TEffectStylePropEd.Create(Application);
try

{ Initialize with the current style }
EffectStylePropEd.EffectStyle := LblEffect.EffectStyle;
if EffectStylePropEd.ShowModal = mrOK then

{ If OK then update with the new value }
LblEffect.EffectStyle :=

EffectStylePropEd.EffectStyle;
finally

EffectStylePropEd.Free; { Tidy up }
end;

end;

Op Tech
ing the Caption to Effect Style. Then we add a number of
TLabelEffect components (each with different EffectStyles we
might want to use), an OK button, and a Cancel button.

The buttons are TBitBtn components, so we merely have
to set the Kind property appropriately (e.g. mrOK and
mrCancel) for them to function as required. They will
automatically close the dialog box when pressed, and
return a value indicating which button was selected.

We then add the form’s property directly into the code. In
the private section of the form’s definition, add our inter-
nal variable FEffectStyle and declare an access method for it.
Then in the public section declare the property itself,
EffectStyle, and how to access it. A write method is required
since we want to update the form to reflect the value given.

We also need to override the constructor method since we are
setting an initial value. The property is not declared as public
because it will not be available at design time (as would be
likely if we were defining a component).

The method chosen to highlight the currently selected style
is to toggle the transparency of the appropriate TLabelEffect
component. Initially, all the labels are set to have a Color of
clBackground (the standard background color for Windows),
and to be Transparent. The write method for our property
must then make the correct label opaque while ensuring
that all the others are transparent.

To do this, we use the list of components maintained by
the form itself, Components[]. We cycle through all the
components on the form, and for each one that is a
TLabelEffect we compare its EffectStyle with our new prop-
erty. If they match, we set that label’s Transparent property
to False. Otherwise we set it to True (see Figure 1).

We also need to react to the user selecting an EffectStyle to
use. The user does this by clicking on the one he or she
wants. So we select all the TLabelEffect components, go to the
Events page in the Object Inspector, and enter a name for a
method to call when a label is clicked, e.g. LabelEffectClick.

In the code we simply want to set the form’s EffectStyle prop-
erty to the value of the one clicked. Since any one of the
labels could trigger this method, we must use the Sender para-
meter to provide access to the correct label.
We ensure that it is treated as a TLabelEffect object with the
as operator, and set the property accordingly:

{ Set the form's EffectStyle property based on the
value of the label selected }

procedure TEffectStylePropEd.LabelEffectClick(
Sender: TObject);

begin
EffectStyle := (Sender as TLabelEffect).EffectStyle;

end;

It would also be nice if the dialog box responded to a dou-
ble-click by selecting the style and closing (as if the OK but-
33 August 1996 Delphi Informant
ton had been pressed). Since a Click event is triggered as
part of a double-click, the correct style has already been set.

All we need to do is simulate pressing the OK button, which
is done by invoking that button’s Click method.

As before, we select all the TLabelEffect components and
enter a method name in their OnDblClick event:

procedure TEffectStylePropEd.LabelEffectDblClick(
Sender: TObject);

begin
btnOK.Click;

end;

We can now test the editor by attaching it to another form
that invokes it on request. This form contains a
TLabelEffect component (to show the effects of any
changes), and a button to request a change to its EffectStyle
property. Following the example on page 41 of the
Component Writer’s Guide for editing the property as a
whole, the button creates a new instance of the editor, sets
its initial value to that of the original label, transfers the
new value back to the original if OK was selected, and then
destroys the editor (see Figure 2).

Note that all references to the dialog box are contained
within a try..finally block. This ensures that the dialog box

Op Tech

Figure 3:
The EffectStyle
property editor
in action.
will be
destroyed at the
end of the
method,
regardless of
any errors that
may occur.

We can check
that the editor
works as expect-
ed (see Figure 3)
and that the
Attribute Meaning

paValueList The editor can give a list of enumerated val-
ues. The GetValues method builds the list.

paSubProperties The property is an object with subproperties
that can display. The GetProperties method
handles the subproperty lists.

paDialog The editor can display a dialog box for edit-
ing the entire property. The Edit method
opens the dialog box.

paMultiSelect The property should appear when the user
selects multiple components. Most property
editors allow multiple selection. The notable
exception is the editor for the Name property.

paAutoUpdate Calls the SetValue method after each change
in the value, rather than after the entire
value is approved.

paSortList The Object Inspector should sort the list of
values alphabetically.

paReadOnly The property is read-only in the Object
Inspector. This is used for sets and fonts that
the user cannot enter directly.

Figure 4: Property editor attributes (from the Delphi online
Help).
TLabelEffect component on our main form reflects the style
chosen in the prototype editor. (As mentioned, the property
editor for the ColourScheme property is virtually identical to
that for the EffectStyle property.)

Putting It in Place
Now that we have the prototype property editor function-
ing as required, it’s time to build it into a real property
editor and register it with Delphi. We start by copying
across the prototype property editor developed above.
This is the form that we want to display when editing the
EffectStyle property. We must add the appropriate code so
that Delphi can invoke it when the user requests.

In the interface section of the unit add a declaration for
the property editor itself (as distinct from the form that it
displays). This is derived from the TEnumProperty class.
Many property editor classes are available to use as the base
class (see the Component Writer’s Guide or the online Help).

In this case, the property we are altering is an enumerated type,
so this class is appropriate. It is derived from TOrdinalProperty
and provides all the processing for generating the drop-down
list of all possible values of the enumeration.

We are adding to this functionality, and so must override
two of the inherited methods: GetAttributes, which tells
Delphi what capabilities the property editor has; and Edit,
which will invoke our new form. Also in the interface sec-
tion, we must declare the Register procedure that informs
Delphi about our changes:

{ The property editor for the EffectStyle property }
TEffectStylePropertyEditor = class(TEnumProperty)
public

{ Public declarations }
function GetAttributes: TPropertyAttributes; override;
procedure Edit; override;

end;

The Register procedure then appears in the unit’s implemen-
tation section. A call is made to the RegisterPropertyEditor
procedure, passing four parameters. The first provides infor-
mation about the property being altered by this editor, and
is always a call to the built-in function TypeInfo. The second
parameter is the type of component to which this editor
applies. If this is set to nil then the editor will apply to all
34 August 1996 Delphi Informant
properties of the given type, regardless of the component in
which it appears.

Next comes the name of the particular property within the
component. Again, if this is left blank (a null string), the
editor applies to all properties regardless of name (provid-
ed they are of the appropriate type). Finally the class of
the editor is supplied.

{ Define the property editor to Delphi }
procedure Register;
begin

{ Only applies to properties of type TEffectStyle
in TLabelEffect component }

RegisterPropertyEditor(TypeInfo(TEffectStyle),
TLabelEffect, '',
TEffectStylePropertyEditor);

end;

The GetAttributes function of the property editor supplies
Delphi with information about the editor’s capabilities. It
returns a set of values from the table in Figure 4. Our proper-
ty editor allows for multiple selection of components, and
presents a dialog box and a list of values.

{ Tell Delphi that we also have a dialog box for editing }
function TEffectStylePropertyEditor.GetAttributes:

TPropertyAttributes;
begin

Result := [paMultiSelect, paDialog, paValueList];
end;

Note that the dialog box is all that we’ve added. The rest is
handled by the TEnumProperty class from which we inherit-
ed, making good use of Delphi’s object-oriented design.

The Edit method of the property editor is the interface
between the user double-clicking on a property and show-
ing our dialog box. As for the button in the prototype
example, it creates a new instance of the dialog box, ini-

Figure 6: Help footnotes and their meanings.

Footnote Meaning Comments
marker

Context string The name of this page or
topic, which must be unique
and serves as the destination
for hypertext links.

$ Title The title of this page, which
appears in the bottom half
of the Search dialog box.

K Keyword The keywords for this page
which appear in the top half
of the Search dialog box.

B Delphi keyword Keywords used by Delphi
when requesting help on a
component, property, or
event from the IDE.

+ Browse sequence Specifies the sequence of
number related screens, which can

then be accessed through
the << and >> buttons in
the Help toolbar.

Figure 5: Invoking the EffectStyle property editor.

{ The procedure invoked when the property is
double-clicked }

procedure TEffectStylePropertyEditor.Edit;
var

EffectStylePropEd: TEffectStylePropEd;
begin

{ Create a dialog box as defined above }
EffectStylePropEd :=

TEffectStylePropEd.Create(Application);
try

{ Initialize with the current style }
EffectStylePropEd.EffectStyle :=

TEffectStyle(GetOrdValue);
if EffectStylePropEd.ShowModal = mrOK then

{ If OK then update with the new value }
SetOrdValue(Ord(EffectStylePropEd.EffectStyle));

finally
EffectStylePropEd.Free; { Tidy up }

end;
end;

Op Tech
tializes it with the property’s current value, transfers any
new value back to the component after executing, and
then destroys the dialog box (see Figure 5). Note that the
GetOrdValue function returns the current value of the
property (for any ordinal type), but that it must be con-
verted into the appropriate enumerated type before it can
be used. Similarly, the value returned for the property
must be converted back into an ordinal value before
Delphi can handle it. Both these conversions are handled
by using the corresponding type as if it were a function,
i.e. casting.

As before, similar processing applies to the ColourScheme
property editor. All that remains is to incorporate the new
editors into Delphi. Having generated the .DCU files, copy
these into the library directory (DELPHI/LIB). Then select
Options | Install components from the menu. Add the editor
units to the list and click OK to start the installation. The
new property editors can then be invoked by placing a
TLabelEffect component on a form and double-clicking on
either the EffectStyle or ColourScheme properties.

A Little Help
Providing Help for a component adds a certain professionalism
to the product, and should answer questions about the compo-
nent without the need for constant reference to the designer.
To produce a Help module it’s necessary to write the source
document so that it can be saved as a Rich Text Format (.RTF)
file. The document must then be compiled to generate the
module that can be interpreted by the Windows Help engine.

Windows Help consists of a series of screens, or topics, that
are connected by hypertext links. Each screen is a separate
page in the source document. Different screens are separated
by hard page breaks (entered manually).

Information relating to that screen is encoded in footnotes,
with different footnote markers having specific meanings (see
Figure 6). The “B” footnote is peculiar to Delphi, and
enables it to automatically provide access to the appropriate
35 August 1996 Delphi Informant
screen of Help when requested from the IDE. The naming
convention that must be followed is:

“class_” + component name for the main component
screen
“prop_” + property name or “event_” + event name for
generic properties or events
“prop_” + component name + property name or “event_”
+ component name + event name for component-specific
properties or events

Hypertext links are encoded by underlining or double-under-
lining the text that denotes the jump and immediately fol-
lowing it with the context string of the destination. The con-
text string must be formatted as hidden text. The difference
between single and double underlines lies in how the destina-
tion screen is shown. A single underline results in a pop-up
window overlaying the original, while a double underline dis-
plays the destination screen in the original window.

Graphics can be incorporated into the Help file by embedding
commands for their placement or by inserting them directly
into the document. The commands are enclosed in braces
({}), and consist of a keyword indicating the positioning of
the image, followed by the name of the image to include.

The keywords are bml for a left aligned picture, bmr for right-
aligned, or bmc for in-line (as a character). The first two key-
words cause the text to start at the top of the image and to
wrap around it. The bmc keyword inserts the image directly
into the text at the position specified. Images can be used as
hypertext links by formatting them as for normal text, but
this is not used in component Help.

Most formatting will be carried across to the Help file, but
tables (as in Microsoft Word) should be avoided. Text can be
prevented from scrolling in the Help window by formatting
the paragraph as “keep with next.”

Figure 8: The online Help described in Figure 7 at run time.

Figure 7: The first page of the TLabelEffect Help document and
its footnotes (shown in Microsoft Word for Windows 6.01). Note
that jump targets are shown — normally they are hidden. The
resulting Help screen is shown in Figure 8.

Op Tech
Help Screens
Help for a component within Delphi consists of a number
of standard screens described below. All use a sans-serif font,
such as Arial or MS Sans Serif. Most of them have the title
in blue that is set as a banner that does not scroll.

There is a screen for the component as a whole, describing
its purpose and key properties. It also provides pop-up lists
of related components and this component’s properties,
methods, and events. For components that appear on the
Component Palette, a copy of the bitmap used to identify
it should appear alongside the component name. Small
images are used in the lists of properties, events, and
methods to denote key elements and elements that are
accessible only at run time.

Instructions regarding how to accomplish common tasks with
this component fills another screen, with links to and from
the component screen. It describes the component’s purpose
and use, and explains which properties or methods to use to
make it do what we want.

There is another screen for the unit that defines the com-
ponent, showing what components and types are declared
therein. Links are provided to these items for more
detailed information.

Screens for each of the component’s properties appear next,
describing their effects and valid values. Links are provided to
related properties (in a pop-window), relevant types, and
example code for using the property at run time. Similarly,
methods and events also rate separate screens, explaining their
purposes and functions. They also link to related methods or
events and example code.

Finally, there are screens for any special types declared for use
within the component. These detail valid values for the type
and provide links to the properties defined for it.

TLabelEffect Help
Help for the TLabelEffect component follows the guide-
lines previously described. Since it is similar to a TLabel
component, those properties and events that are common
are not described. Only the added properties have detailed
descriptions. No new methods or events have been added.

A naming convention has been adopted to make the coding of
links easier. Topics are all in upper case and consist of the item
name followed by a screen type, separated by an underscore
character (_). For example, the items include TLABELEF-
FECT, the component; DEPTHHIGHLIGHT, a property;
and EFFECTDEPTH, a type. Screen types include COMPO-
NENT, PROP, and TYPE. Figure 7 shows the first page of the
Help source document with its corresponding footnotes.

Note that the link destinations are shown, whereas normally
they would be formatted as hidden text. Figure 8 shows the
same page of Help at run time.
36 August 1996 Delphi Informant
The “B” footnotes for integrating with Delphi use the com-
ponent-specific format of “prop_” + component name +
property name. This ensures they will only be referenced for
the TLabelEffect component, even if another component con-
tains properties of the same name.

Navigational connections are made between all the proper-
ties and between all the types for the component. This is
done through the “ + ” footnote, with the associated value
being a group identifier, followed by a sequence number,
separated by a colon. The numbers increase by five each
time to allow for easy insertion at a later stage, and all
consist of three digits since they are all treated as alphabet-
ic values for comparison (i.e. so “5” is not less than “10”).
This means that the properties and types can be read as a
group by pressing the << or >> buttons in the Help tool-
bar from any one of them.

Several small standard images appear in Delphi’s Help,
such as the “key” image displayed beside key properties of
a component. These images are included in the source

Op Tech

Figure 10: The TLabelEffect Help project file.

[OPTIONS]
title = LabelEffect Help
root = C:\Delphi\Comps\LblEffct
compress = false
report = on
warning = 3

[FILES]
lbleffct.rtf

[CONFIG]
BrowseButtons()
CreateButton("btn_delphi","&Delphi","JumpContents('Delphi.HLP')")
document and as separate bitmap files in the files accom-
panying this article.

Some Detective Work
For the TLabelEffect Help, we want the ability to refer back
to the TLabel entry provided in Delphi’s online Help. We can
provide a hypertext link to another file by specifying the con-
text string followed by the “at” symbol (@), and the name
of the Help file where it’s found (including the extension).

This is fine if we know the appropriate context string.
Guessing at what it might be proves fruitless, but the con-
text strings must be available somewhere to allow access to
them from programs and the Help engine itself. After
some exploring of the Help related files, we find that the
keyword file (.KWF) contains these strings. Unfortunately,
they are not obvious from examining the file. Searching
using “TLabel” eventually locates a section of text that
refers to vclTLabelControl. Testing this reveals that it is the
context string we want.

Further examination gives a general overview of the sort of
context strings that are encoded in Delphi Help. These are
shown in the table in Figure 9, along with examples of
specific values. Text between the angle brackets (< >)
should be replaced with the name of the item being refer-
enced. The difference between controls and components is
not clear, but appears to be related to whether the compo-
nent is a standard Windows control.
Figure 9: Table of Delphi Help context strings.

Type of Format Example
reference

Control vcl<component>Control vclTLabelControl

Component vcl<component>Component vclTMemoComponent

Object vcl<object>Object vclTListObject

Property vcl<property>Property vclCaptionProperty

Method vcl<method>Method vclDraggingMethod

Event vcl<event>Event vclOnClickEvent

Procedure vcl<procedure>Procedure vclShortCutToKeyProcedure

Function vcl<function>Function vclInputBoxFunction

Type vcl<type>Type vclTAlignType
We also want to provide a button on the Help toolbar to
allow access to the rest of the Delphi online Help. This is
done in the Help project file, which is described further
below.

The Help Project File
Along with the Help source, we need a project file (.HPJ)
to tell the Help compiler where to find everything and
what to do with it. The one used in this case has the bare
minimum of entries since the Help is contained in a single
source file without any special processing. The basic layout
of the project file resembles an .INI file, with named sec-
37 August 1996 Delphi Informant
tions followed by various parameters. The contents of the
TLabelEffect project file are shown in Figure 10.

The [OPTIONS] section contains parameters that control
the Help compiler. In our case, we specify the text to
appear in the Help window’s title bar, the directory in
which to find the source files, that we do not want any
compression done, and that error messages are to be dis-
played during the build process.

The [FILES] section contains a list of all source files to be
used in the compilation. All will be combined into the one
Help file. An external list of files can be added by using
the include directive (#) and enclosing the file name in
angled brackets (< >).

Finally, the [CONFIG] section contains macros that we want to
run when the Help file is opened. The BrowseButtons macro
adds the << and >> buttons to the Help toolbar and enables
them appropriately to browse through related topics. To allow
access to Delphi Help, we can add a CreateButton macro to
this section of the project file with the action being to jump
to the contents page of the DELPHI.HLP file. Note that the
initial “single quote” is actually a grave accent mark (`). A
single quote (or apostrophe) will not work.

There are many more sections and parameters that can be
added to the project file, but these are sufficient for our purpos-
es. Have a look in the API Help for lists of the Help macros,
and in the Help compiler documentation for the remainder.

Compiling the Help File
The Help compiler is then invoked and passed the name of
the Help project file. From this, it locates the necessary
source documents and generates the compiled Help file. The
compiler may be called HC31.EXE or HCP.EXE, depending
on which version is available.

Note that it is not a Windows program, and so it must be
run from a DOS window or from the command line avail-
able through File | Run in the Program or File Managers. In
this case the command is:

hc31.exe lbleffct.hpj

Op Tech

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra. He
started using Borland’s products with Turbo Pascal on a CP/M machine. Although
not working with Delphi currently, he has enjoyed exploring it since it first
appeared. You can reach him via e-mail at kwood@netinfo.com.au or by phone
(Australia) 6 291 8070.
We need to extract a list of keywords defined in the compiled
Help file. These are used by Delphi when integrating the
Help into its own system. This can be done by selecting the
Keyword Generate icon in the Delphi group.

Enter the name of the Help project file (LBLEFFCT.HPJ in
our case) and the name of the output file will be automatical-
ly generated with an extension of .KWF. Then click on the
OK button to produce the keyword file.

Now that we have the compiled Help and keyword files,
they can be integrated with Delphi. To do this, copy the
.HLP file to \DELPHI\BIN, and the keyword file (.KWF)
to \DELPHI\HELP. Then merge the component Help
keywords into Delphi’s list by selecting the HelpInst icon
in the Delphi group, opening file DELPHI.HDX in
\DELPHI\BIN, adding the LBLEFFCT.KWF file to the
list, and compiling and saving the .HDX file.

The Help can now be accessed by selecting a TLabelEffect
component on a form, or one of its new properties in the
Object Inspector and pressing 1. The appropriate screen of
Help should appear. Help for the properties and events inher-
ited from TCustomLabel are still available, and originate from
Delphi’s own Help system.

Conclusion
Adding property editors to a component enables particular
properties to be altered graphically. Although not applicable
to all properties, it does enhance those with a strong visual
presence — such as the two presented here — and can
38 August 1996 Delphi Informant
complement selecting values from a list or entering them
directly. This lets the user update the property in various
ways, allowing the user to select the most appropriate one.

Help can explain the use and limitations of a component
and its properties. Having this available online enables it to
be accessed when it is most needed, i.e. when the compo-
nent is being used. Delphi allows for this additional Help
to be integrated into its own Help structure so that the
user sees no difference between the two. Copying the style
of Delphi’s own Help means the component’s Help blends
in that much better.

Together, these additions to your component give it that profes-
sional finish and — perhaps — an edge over the competition. ∆

The demonstration forms and files referenced in this article are
available on the Delphi Works CD located in
INFORM\96\AUG\DI9608KW.

From the Palette
Delphi 2 / Object Pascal

By Karl Thompson

39 August 1996 Delphi Informant

Table Documentor: Act 32
Enhancing Some Native Delphi Components
for Use in a Comprehensive Utility
DirectoryListBox, FileListBox, DriveComboBox, and FilterComboBox.
These four components ship with Delphi, and give developers an

easy way to allow their users to navigate drives and directories, and to
select files. Generally these components work just fine, although they
do have one major design limitation: What happens when you want to
give your users access to database files on a UNIX server, or to data
files via an alias? With these components, you’re out of luck; since they
don’t support aliases, it’s impossible to use them to access tables on
database servers.
We’ll enhance these components to allow this
access. Besides giving you three improved com-
ponents (the functionality of DirectoryListBox
and DriveComboBox are combined into one
component), I’ve also upgraded the Table
Documentor utility that first appeared in the
March 1996 issue of Delphi Informant. This
utility provides a good example of how to use
the enhanced components.

In addition to server access via an alias, the
new version of Table Documentor has been
updated to recognize the new field types
that became available with the release of
Delphi 2. (The new version of Table
Documentor, as well as the three enhanced
components, require Delphi 2 to compile.)

Also, a multi-table dynamic viewer was
incorporated into the program. Now, not
only can you document the structures of
database tables, you can also view the con-
tents of up to three tables at once. In addi-
tion, you can optionally print structures to
text files. I’ve found this feature to be very
useful; when working on team projects,
I’ve been able to easily include in e-mail to
team members copies of table structures
when necessary.
All of this — the updated utility, the
enhanced components, and over 2,000 lines
of source code — is available for download
(see end of article for details).

Let’s Get Started
This article will be divided into two broad
areas. First we’ll look at the development
details of the new components, then we’ll
review the new functionality of the Table
Documentor. If you are a component devel-
oper, you’ll be particularly interested in one
component: KtDrvDirLstBx. A unique kind
of list box, it exhibits different behavior
depending on the type of item selected.

Also, while studying the development of the
components, we’ll take a look at a code error
that lead to a rather nasty bug (nasty in that
the error messages Delphi returns were not
very helpful in finding the problem).

However, after the side effects of this error
are brought to light, you’ll be able to instant-
ly know when you’ve been bitten by this bug.

In addition to the standard components not
providing access to files via an alias, there is
another shortcoming. As we all know,

From the Palette
Microsoft sets design standards with respect to the Windows
interface. One of these calls for the user of a combobox to
make a drive selection and a list box to navigate the directories
on the selected drive.

In pre-Delphi versions of Object Pascal, Borland made a con-
siderable enhancement to this standard by incorporating the
ability to select a drive and navigate the directories in one list
box. When I had the opportunity to beta test Delphi 1, I
urged Borland — to no avail — to maintain this ability, even
though it deviated from the gospel according to Microsoft.
Anyway, if you don’t like the tool, Delphi gives you the power
to create your own, and that’s what we’ll do this month.

The functionality of the original Delphi components will
be replaced with ktDrvDirLstBox, ktFileListBox, and
ktFilterComboBox. Naturally, the original components
will remain on the Component Palette. The new compo-
nents will be installed on the System page, and their
bitmaps look exactly like the original Delphi ones, except
for the yellow ‘E’ on them.

The functionality of the DriveComboBox and
DirectoryListBox has been combined in the
ktDrvDirLstBx component. ktFileListBox and
ktFilterComboBox function just like their counterparts,
although if you’re going to use ktDrvDirLstBox in an
application, you must use the corresponding ‘kt’ compo-
nents and not the original Delphi ones.

A descendant of CustomListBox, the ktDrvDirLstBx compo-
nent is the focal point. A student of Object Pascal might
wonder why the component doesn’t descend from
DirectoryListBox. After all, isn’t one of the great benefits of
OOP that the programmer doesn’t have to re-invent the
wheel, but rather merely extend existing functionality? At
first it would seem to be a perfect opportunity to inherit the
behavior of DirectoryListBox, and add to it our new features.

Although that’s what I had originally set out to do, it soon
became apparent it would not work. One problem is that
Object Pascal doesn’t allow for multiple inheritance. Because
we want the custom directory list box to have both the fea-
tures of Delphi’s DirectoryListBox and DriveComboBox, it
became necessary to descend from TCustomListBox.

The other hurdle to overcome is more subtle. Normally, list
boxes handle only one type of item. They may present the
user with a list of similar choices for configuring an applica-
tion, such as a list of modems. Or in the specific case at
hand, one standard Delphi list box allows the user to select a
directory, and another list box allows for the selection of a
specific file. However, our design objective requires that a list
box handle available drives, directories, and aliases.

You might be thinking this really doesn’t present a problem,
because the items in question really are represented by ini-
tialized strings that are handled by the Items property which
40 August 1996 Delphi Informant
is of type TStrings. And you would be correct — except for
one minor detail. The list box must exhibit different behav-
ior depending on which type of item is selected by the user.
This certainly is not a characteristic of a normal list box.

Distinguishing Code
Now that we understand this problem, how will the code
know how to distinguish between Items[10] which may be
a drive and Items[16] which may be an alias or a directory?
The answer is simple. Each item has associated with it a
bitmap object. The bitmaps are different for a drive, an
alias, an open directory, and a close directory. By evaluating
the bitmap associated with any item, it is easy to determine
the nature of the selected item. Pretty cool, huh?

Let’s go to the code for an example. The following is found in
the TktDrvDirLstBx.DblClick method:

if not(TBitmap(Items.Objects[ItemIndex]) = FAliasBMP) then
OpenCurrent

else
begin

...

When the user double-clicks on an item in an instance of
the ktDrvDirLstBx, the item is selected, and if it is a drive
or directory, it then becomes the working or default sys-
tem path.

However, if the item is an alias that is mapped to a UNIX
server, for example, then the directory on the UNIX server
can’t be the working directory of the DOS environment.
Therefore, the above if statement checks first to see if the
user has doubled-clicked on an alias, and if not, then ‘nor-
mal’ DOS behavior is executed with a call to OpenCurrent.

Notice that the Object field of the Items property can be
any one of a number of different type of objects such as
TGraphic, TOutlineNode, TBlobStream, or TCanvas (to
name a few), in addition to the TBitmap that interests us.
Therefore, because we know we are dealing with a bitmap
(after all, that is the kind of object that was inserted into
the object field when the Items property was initialized), we
must type cast the left side of the equality test to that of a
TBitmap. (See the TktDrvDirLstBx.BuildList method if you
want to see how the objects and the strings are initialized.)

The ktDrvDirLstBx adds several new properties. Among
them are:

AliasChar (Char)
AliasLeadSep, AliasTrailSep (Boolean)
DrivesFirst (Boolean)
ShowAliases (Boolean)
AliasBMP (TBitmap)

If either AliasLeadSep (alias leading separator) or
AliasTrailSep (alias trailing separator) are True, then the
alias name (assigned to the Directory property) is padded
accordingly with the value of AliasChar. The default for

From the Palette
each is True. This behavior is implemented so an applica-
tion that processes the string values of the Item property
can parse the value to determine if it is an alias. Again,
one may wonder: Why not test the value of the object
field? You should note the bitmaps are not public; so in
keeping with the original Delphi design, I chose not to
make them public. Also, Paradox programmers are accus-
tomed to :AliasName: so I wanted to be able to provide
this functionality. Again, check out the Table Documentor
for an example of how this feature is used (the
All2DocClick method provides one such example.)

Two other properties that are useful for controlling the run-
time behavior of your application are DrivesFirst and
ShowAliases. When DrivesFirst is True, the ktDrvDirLstBx
instance will list drives and directories first; otherwise aliases
will be listed first. If ShowAliases is False, the list box will
show only drives and directories.

I assume there may be someone who doesn’t care for the glyph
I used for the alias bitmap. (Maybe you’ll want the glyph used
for an alias in the Database Explorer that ships with Delphi.)
By surfacing the AliasBMP property, the programmer can
change the glyph. Simply assign a properly initialized bitmap
to this property. (Remember, it is the programmer’s responsi-
bility to free the bitmap after the assignment.)

Finally, I should discuss the ktDrvDirLstBx property. In
the original Delphi version, a programmer can assign a
value to this property, and if it is a valid directory name,
the system default directory will become that directory.
This is also how ktDrvDirLstBx works. However, the
Directory property will return the name of the currently
active alias (an alias is made active by double-clicking on
it). So far, so good. The property is initialized within the
scope of the component by assigning the alias name to the
FDirectory variable. However, FDirectory is not available to
the application that uses ktDrvDirLstBx. If the application
attempts to assign an alias name to the Directory property,
the program will get a “Not a valid file name error”. This
is because the SetDirectory method (the write method that
assigns a value to Directory) will attempt to change to the
alias as if it were a valid directory).

So on one hand, ktDrvDirLstBox.Directory can return a
valid BDE alias name, but the program cannot assign an
alias name to that property. This did not seem to be a
major drawback, because I could not think of a case when
an application would need to assign such a value to the
Directory property. However, I’m sure that some enterpris-
ing Delphi Informant reader will come up with a good rea-
son to be able to do so!

A Component Error
I mentioned at the outset that I would reveal a coding error I
made while developing these components — one that proved
to be quite tricky to track down.
41 August 1996 Delphi Informant
The error is nasty and renders your library useless! Therefore,
make sure you’ve made a backup of your CmpLib32.DCL file
before attempting to learn about this error.

Once you’ve successfully installed the enhanced components,
and ktDDBug.res is in the same directory as the unit, there
are two steps needed to recreate the bug.

First, activate the define statement at the head of the
ktDrvDir unit file ({.$DEFINE BUG1}) by removing the
initial period. Then, rebuild the component library by select-
ing Component | Rebuild Library. The component library will
be trashed! And the only message you’ll get will be “Invalid
ImageList Index.” The problem arises because the
ReadBitmap method tries to load a resource named ALIAS:

FAliasBMP.Handle := LoadBitmap(HInstance,'ALIAS');

The name apparently conflicts with some other resource
name in the component library, or is some kind of reserved
identifier for some other purpose. Either way, changing the
name alleviates the problem.

By the way, if you do test the library with the above error
activated, you can simply restore the working library by
copying the backup copy of your library to
CmpLib32.DCL, selecting Component | Open Library, and
selecting CmpLib32.DCL.

How did I find this error? Unfortunately, only through
detective work and good luck. It’s interesting that the error
didn’t surface until the unit was compiled into the compo-
nent library. That is, if you follow the Component Writer’s
Help file instructions for “Testing Uninstalled Components,”
this error won’t surface.

The Table Documentor Program
Enhancing the Table Documentor utility provides a per-
fect example for our enhanced components. In the first
article I suggested some changes to the interface. To a
large extent, those changes have been incorporated into
this version. The most visible change is the use of a
TPageControl. (Using a TPageControl rather than a new
form to display the structure results saves a lot of screen
real estate.) You’ll find the three new components on the
first page of the notebook.

Using the utility is straightforward. Simply navigate drives,
directories, and aliases in the ktDrvDirLstBx. As you move
through the directories, you’ll see files displayed in the center
ktFileListBox. If you wish to filter your files to show only
Paradox or dBASE tables, you can do so by using the
ktFilterCombo.

Aliases are distinguished in the ktDrvDirLstBx by the alias
bitmap. If you have aliases defined in your BDE that con-
nect you to a database server, when you double-click on
one of them, you’ll be prompted for your user name and

From the Palette

Figure 1 (Top): The enhanced Table Documentor utility for 32-
bit environments. It allows you to select a table by referencing
an alias or a specific drive. Select the number of tables to docu-
ment in the Available Files list box, then select the appropriate
arrow buttons to move or remove files from the list box at the
far right. Figure 2 (Middle): In Figure 1, CLIENTS.DBF was one
of the tables the user selected to document. By clicking on the
Structures tab, the user can view the structure of this table.
Figure 3 (Bottom): The Browser page allows the user to view
the data stored in the tables.
password, as well as any other information the database
requires for logging in.

You may select files for processing using one of several
methods. If you scroll through the file list and double-click
on a file name, the name will appear in the right-most list
box. You can also use the standard Windows selection tech-
nique of pressing S while clicking on one file name,
and then clicking on another file name further down the list
to select a contiguous list of files. Or you can hold C and
single-click random files to select. After files are selected,
you can click the > button to move them to the Table to

document list box. Finally, you can click on the >> button
to move all of the files to the list box. This also works in
reverse to remove files from the Table to document list box.
By the way, you may select files from more than one directo-
ry or alias at a time. Table Documentor keeps track of the
file’s location internally. This way, you can document or view
two tables in different locations at the same time.

After one or more table selections are made, the user can view
the table structure of each selected table by clicking the Show

Structures button (see Figures 1 and 2). [The table structure
retrieval process is described in Karl Thompson’s March
1996, Delphi Informant article.]

If the Browser tab is clicked, the first three selected tables are
dynamically linked to a database grid (see Figure 3). I’ve
found it useful to have a listing of a table’s structure and a
view of the table’s data on one form, with access controlled
by just a few mouse clicks.

The Options page (see Figure 4) deserves a few brief com-
ments as well. The Print options are self explanatory. If the
Browser Status is set for Auto refresh, the views of the data
tables will be refreshed every time the Browser tab is select-
ed. Normally this is OK.

If the view is to a large table on a server, however, it may
take some time to refresh the tables, so the user is given the
option of preventing a refresh. Of course, a manual refresh
can be accomplished by clicking the appropriate R button
(again, see Figure 3).

The Path/Alias Options allow fine tuning of the environ-
ment. The Save path/alias option only affects the display in
the list boxes and the GroupBox captions. If the option is
selected, then the path or alias will be displayed along with
the file name. Although this is handy for reference, often
the FileListBox will not be wide enough to display a full
path and file name. In such instances, you’ll want to turn
this option off. You can also control whether aliases will be
listed first or last in the DrvDirLstBx with the List alias first

option; or you can choose to not display aliases at all.

Enhancements
We’ve reached the point were I normally make suggestions
for further enhancements to the application. The obvious
42 August 1996 Delphi Informant
suggestion is to document more about the table’s structure.
For example, it would be helpful to know what fields have

Figure 4: Want to print the selected tables’ structures? The
Options page allows you to do this, as well as set Browser
Status and Path/Alias Options.

From the Palette

Karl Thompson is an independent Paradox and Delphi developer serving clients
from New York City to Philadelphia. He has been writing applications using
Borland’s Pascal since 1984. He can be reached at (800) 242-9192, or on the
Internet at 72366.306@compuserve.com.
validation checks. This requires BDE calls, which are beyond
the scope of this article.

Additionally, the code that dynamically changes the links
between the table components and the databases is a good
candidate for execution in a thread. Such a change would
probably make it possible to leave the Auto refresh option on.
43 August 1996 Delphi Informant
There is one other significant enhancement I can think of: a
horizontal scrollbar. Unfortunately, list boxes don’t have the
ability to display them. In the case of Table Documentor,
where listing of paths and file names can easily be wider
than the allotted space, it would be nice to have the ability
to scroll left and right to see the entire file name.

Finally, there is that perpetually deferred task, online Help.
Both the components and Table Documentor would benefit
from concisely written Help.

I hope you find these components as useful as I have. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\AUG\96\DI9608KT.

TextFile
An Insider Look at Delphi’s Roots
“One of the Best Gets Better”
continued on page 45

“An Insider Look at Delphi’s Roots”
continued on page 45
I recently read Paul Cilwa’s
Borland Pascal 7 Insider [John
Wiley & Sons, 1993], and
I’m glad I did. Cilwa is a
Windows programming con-
sultant with solid develop-
ment experience — and it
shows; he offers excellent
advice on how to write
“good” Pascal. Insider was
written for Pascal program-
mers by a Pascal “insider.” As
such, it’s a clearly written
guide to the undocumented
and hard-to-find topics that
are barely addressed, and are
more often ignored, in
Delphi literature.

Programmers new to Pascal
beware: Borland Pascal 7
Insider, and other Pascal 7
titles, should only be consid-
ered after you have worked
with Delphi for a while and
are comfortable examining
advanced language topics.
Delphi’s online Help and
printed documentation detail
the differences between
Borland Pascal 7 and Delphi
syntax. Delphi programmers
who do not have experience
with Borland Pascal should
familiarize themselves with
these differences before read-
ing Insider.

Delphi, with the inclusion
of the form designer and
.DFM files, has rendered
many difficult and error
prone Windows program-
ming techniques obsolete.
Pascal 7 pre-dates these
developments, and therefore
requires Resource Workshop
and the need to map resource
constants in source files. For
this reason, studying Insider
with an eye on the Delphi
44 August 1996 Delphi Informant
source code included in the
Developer release of version 2
can reveal many of the inter-
nal workings of Delphi.
Unless you have Resource
Workshop, don’t expect to
work through the code exam-
ples contained in this book.

Insider is divided into three
parts. Part 1 begins with a
discussion of “good”
Windows programming, and
moves quickly into defining
an enhanced string class to
illustrate some object-orient-
ed techniques. It then moves
to resources and the con-
struction of a set of OWL
derivative classes. These sec-
tions include a “from-the-
ground-up” look at
TApplication and TForm.
Part 2 continues with a

behind-the-scenes view of
TMenuItem, creation of a
standard file management
dialog, and building a wrap-
per class for managing .INI
files. These sections will be
of particular interest to com-
ponent writers, as well as
those seeking special features
of the Windows 95 look and
feel. Part 2 concludes with
an .INI editor and a detailed
discussion on how to inte-
grate online Help into your
applications.

Part 3 addresses working
with the Clipboard, DDE,
and OLE. The Clipboard
discussion alone is probably
worth the price of the book.
Cilwa clearly explains how a
robust Windows application
should — and can — sup-
port the most feature-rich
data formats. If you’ve ever
used cut-and-paste unsuc-
cessfully, you’ll now learn
why. Cilwa’s work on DDE
and OLE is equally good.
Part 3 concludes with an
One of the Best Gets Better

I enthusiastically reviewed

Marco Cantù’s Mastering
Delphi in the pages of Delphi
Informant last November. It
quickly became the book I
turned to when trying to solve
Delphi problems. Therefore, I
expected a great deal from
Cantù’s sequel, Mastering
Delphi 2 for Windows 95/NT
[SYBEX, 1996]. And I was
not disappointed.

However, I was surprised to
find the page count had gone
down by more than 30 per-
cent. My concern was
whether any important mate-
rial had been omitted. A
quick check revealed the
overall outline was largely
unaltered; only a few chapter
titles were changed, generally
reflecting differences between
Delphi 1 and 2. Still, most
chapters had significantly
fewer pages than before.
Some careful searching
revealed why: tighter editing,
which improves the presenta-
tion; slightly reduced inter-
line leading, which does not
affect readability; and the
omission of some longer code
fragments, although they still
appear on the accompanying
CD. All in all, this seems like
a prudent approach.

Unlike some Delphi 2
books, this one is far more
than the result of a few global
phrase substitutions, or the
addition of a Delphi 2 appen-
dix. Throughout the book, the
material is updated to reflect
Delphi 2 practices.

For example, one major
change is in chapter 18,
“Client/Server and Advanced
Database Applications” (for-
merly “Building Client/Server
Applications”). Here, the old
material is compacted signifi-
cantly by omitting a lengthy
code example (which is avail-
able on the CD). Additionally,
new sub-sections discuss three-
tier architecture, data mod-
ules, filtering, and Delphi’s
data dictionary.

Chapter 22, “Adding
Printing Capabilities to
Delphi Applications,” covers
not only ReportSmith, but
also QuickReport, a subject
often missing from quickie
updates of other Delphi 1
books. The chapter concludes

TextFile
An Insider Look at Delphi’s Roots (cont.)
excursion into serial commu-
nications. In a cleverly con-
structed exercise, the reader
works through an example of
how to set a system clock by
dialing into the National
Institute of Standard’s atomic
clock. Cilwa clearly has a
sense of humor.

Although you won’t find
fancy component design or
slick graphics in Insider, you
will find a frank, well-writ-
ten discussion of serious
Pascal and Windows applica-
tion development. As an
“insider,” you’ll learn how to
construct frameworks, such
as the VCL, using API calls
and messaging, and you’ll
gain a better understanding
of how to manage memory,
as well as explore the differ-
ences between virtual and
dynamic methods. You’ll also
learn coding efficiencies,
such as passing C-style API
45 August 1996 Delphi Informant
parameters in Pascal pro-
grams without the tedious
type conversions.

Insider is a coding resource
for serious developers looking
to deeply examine Delphi
and general Windows devel-
opment. If you’ve read other
Delphi books, and have writ-
ten programs, but you want
to examine your Pascal roots,
consider Paul Cilwa’s Borland
Pascal 7 Insider.

— James Callan

Borland Pascal 7 Insider by
Paul Cilwa, edited by Jeff
Duntemann. John Wiley &
Sons, Inc., 1 Wiley Drive,
Somerset, NJ 08875-1272,
(800) 225-5945.

ISBN: 0-471-59894-1
Price: US$26.95 (537 pages,
source code disk available)
One of the Best Gets Better (cont.)

by demonstrating how
QuickReport sometimes pro-
vides a better solution than
ReportSmith.

The CD provides code for
examples from both editions.
It also offers a generous col-
lection of third-party con-
trols and other information.
Unfortunately, many of these
extra goodies haven’t kept
current. As the book’s intro-
duction states, “the third-
party components on the
CD are the 16-bit versions,
so you cannot install them in
Delphi 2 (unless they
include 32-bit compatible
source code).” For a book
that is specific to Delphi 2,
this seems curious.

One area where the Delphi 2
edition outweighs its predeces-
sor is the index — it is now
73 pages. The completeness of
this enlarged index is greatly
appreciated.

I previously stated Mastering
Delphi deserved a place on
your short list of candidates if
you intend to buy only one
book on Delphi. If you’re
now venturing into 32-bit ter-
ritory, the same holds true for
Mastering Delphi 2.

— Larry Clark

Mastering Delphi 2 for
Windows 95/NT by Marco
Cantù, SYBEX Inc., 2021
Challenger Dr., Alameda,
CA 94501, (800) 227-2346
or (510) 523-2373.

ISBN: 0-7821-1860-7
Price: US$49.99 (1,043
pages, CD-ROM)

46 August 1996 Delphi Informant

New & Used

By Bill Todd

Ace Reporter
A Band-Oriented Report Writer
Written in Delphi for Delphi

Figure 2: Click t
Create Labels dia

Figure 1: Gettin
Tired of creating reports with report generators that are huge, do not
integrate well with Delphi, and make distribution — especially in stages

— a nightmare? Ace Reporter may be exactly what you are looking for.
Produced by SCT Associates, Inc., Ace
Reporter is a report writer, written in Delphi
exclusively for use with Delphi. And its
familiar band orientation will make most
developers feel right at home.

Getting Started
To create a report, just drop a DataSet (e.g.
TQuery and TTable), DataSource, and
he FAST button on the report to display the Auto
log box.

g started with Ace Reporter.
SctReport component onto a form. Your
form should resemble Figure 1. After con-
necting the DataSet and DataSource com-
ponents, open the Object selector and
choose the ReportPage component, or click
on the white square at the end of the hori-
zontal ruler to select the page.

This component is not visible on the form,
but was created automatically when you
placed the SctReport component on the
form. Set the ReportPage component’s
DataSource property to the DataSource
component.

Although you can drop individual fields
and labels on a report, it’s quicker to press
the FAST button on the report to display
the dialog box shown in Figure 2. Clicking
the Next button displays a page of column
headings that are generated automatically,
and allows you to edit them.

Another click of the Next button displays
the page shown in Figure 3. This enables
you to select within which bands the text
labels (column headings) and variable
labels (fields) will be placed.

The report is ready to run. All that’s needed
is a menu choice or button to call the
SctReport component’s Run method.

Running the Report
When the report is run, the Report
Destination dialog box is displayed (see

Figure 4: The Report Destination dialog box.

Figure 3: After selecting Next, the Auto Create Labels dialog box
allows the user to select bands for placement of text labels and
variable labels. Figure 5: AceViewer, Ace Reporter’s print preview window.

Figure 6: The finished example report.

New & Used
Figure 4). It gives you a chance to set the number of
copies, page range, printer, and send the report to the
screen or printer. Using code, you can set the initial
defaults for this dialog box, or you can suppress the dialog
box altogether.

When you send the report to the screen, the AceViewer will
be displayed (see Figure 5). This preview window is exactly
what you would expect, with controls to move from page to
page, change the zoom factor, and print the report. As you
can see, Ace Reporter can handle memo fields and graphics
without a problem.

Ace Reporter’s advanced features include its ability to send
a report to the screen and immediately display the first
page, even before the entire report has been run. Page one
appears in the previewer as soon as it has been generated,
and an indicator gauge in the previewer’s toolbar displays a
percentage of the report generated. In addition, you can
use the previewer’s split screen mode to view two sections
of the same report, or two reports at once. If you don’t
like the appearance or features of the preview window, you
can also design a custom previewer.

The Feature Set
Ace Reporter has an excellent suite of tools to enhance the
appearance of your report. These tools assist developers in
47 August 1996 Delphi Informant
adding horizontal and vertical lines, boxes, and other
shapes. Each band features a BorderType property that lets
you turn on a single line border around the band.
Returning to the report design in Figure 1, it’s easy to
select the page header band by clicking on it and dragging
the bottom edge down to add space below the column
headings. Then drop a SctLine component on the report to
place a horizontal line below the headings.

SctLine is one of the small jewels in this product. The line
is actually contained in a rectangular component. You can
set a property to determine if the line lies on the rectangle’s
top or bottom edge. This offers two benefits. First, since
the line is part of a rectangle, it’s always perfectly straight
as you drag it horizontally across the report. Second, by
adjusting the height of the rectangle you can add space
above or below the line. This is much easier to use than the
line drawing tools in any other report writer I have used.

To create a tabular look for the report, choose the option on
the FAST button that automatically places a vertical divider
line between each field. If you want to add vertical lines after
the fields are placed, V-click the SctVerticalDivider on the

New & Used
Component Palette, then click between each field in the
detail band of the report. This places a vertical line between
each field, and the line automatically sizes itself to the height
of the detail band. This guarantees there will be no gaps in
the vertical lines, and is another example of the thought and
care that has gone into designing Ace Reporter.

If you want a grid style report with vertical lines between
the columns and horizontal lines between the rows, set the
detail band’s BorderType property to provide the horizontal
lines. In addition to the line and vertical divider, there is
also a SctShape component that lets you quickly add boxes
and other shapes to a report.

Figure 6 shows the finished report with the added horizontal
and vertical lines. Another great feature is Ace Reporter’s Run

button. Click the Run button on the report and it will run to
the screen while you are still in design mode in Delphi.

Building on Delphi’s Capabilities
When you first place the SctReport component on a form
(again, see Figure 1) it provides report header and footer,
page header and footer, and detail bands. Each band has a
check box that lets you quickly toggle its visibility.

By clicking the Page button, you can add one or more
group bands to the report. Ace Reporter’s groups are
unique because when adding a group on a field, it doesn’t
sort the data on that field. The Ace design philosophy —
and it’s a good one — is not to provide functionality
already available in Delphi. To use a group in a report
when the data in the table isn’t in order by the field to
group on, use a TQuery component as your DataSet and
let the ORDER BY clause in the query do the sorting.

Aggregates without Aggravation
A report just isn’t a report without subtotals, running totals,
final totals, minimum and maximum values, averages, sums,
and counts. And Ace Reporter provides them all. However,
the way Ace Reporter displays information on a report is dif-
ferent from any report writer I’ve used before, and it’s a very
flexible and powerful approach.

Ace Reporter’s basic architecture accumulates and stores
information in variables and then displays the information in
labels. You can define three types of variables for a report:
field, expression, and total. You will rarely need to define field
variables since Ace Reporter creates a field variable for every
field in the DataSet used.

You create a total variable when computing the sum,
count, minimum, maximum, or average of a field. To cre-
ate the variable, click the Page button on the report to
open the Page Manager. From there, select the Variables
tab and press the Add button. When you define a total
variable you don’t need to specify the type of summary
information needed (sum, minimum, maximum, etc.),
only define the field variable to summarize.
48 August 1996 Delphi Informant
Next, place a TotalVarLabel component from the
Component Palette on the band where you want the sum-
mary to appear. Set the Variable property to the variable
previously defined in the Page Manager, and the TotalType
property to the type of summary needed.

If you want a different summary value on the same field or
in a different band, you do not need to define another total
variable. Just place the necessary TotalVarLabel components
and connect them to the same variable.

Express Yourself
Expression variables allow you to display any piece of informa-
tion from anywhere. After defining an expression variable in the
Page Manager, select it in the Object Inspector’s drop-down list
and set its UpdateLevel property. UpdateLevel is set to one of the
bands on the report. Whenever Ace Reporter is about to print
that band, it will trigger the variable’s OnGetData event.

Then, in the event handler, write code to determine the value
displayed, and assign that value to a parameter passed to the
event handler. This means you can perform any type of com-
putation, locate values in other tables, or do anything else
that Object Pascal can do.

You display the value of an expression variable on your report
the same way you did with a total variable. Place a VarLabel
component on the report and set its Variable property to the
name of the expression variable. You can also include any cal-
culated fields that you defined using the Delphi Fields editor
and OnCalcFields event handler in your report.

The Devil’s in the Details
Another unique and powerful feature of Ace Reporter is
sub-bands. A sub-band is a band that is linked to another
band in the report. The sub-band is printed each time the
band it is linked to is printed. Sub-bands can be used to
display data in one-to-many relationships.

For example, if you want to print all the orders for a cus-
tomer, you would display the customer information in the
detail band, then create a sub-detail band connected to the
Orders table’s DataSource to display the order records.

Another example of the power and flexibility of Ace
Reporter is its ability to allow you to set the ReserveSpace
property of the detail band to the minimum number of
detail records to appear on a page.

In this example, ReserveSpace is set to 3, instructing Ace
Reporter to print this customer on the next page, unless
there is room on the current page for the customer data
and at least three order records. You can also add sub-
header and sub-footer bands to print column headings,
other header information, or totals for the detail records.

What’s really impressive is that Ace Reporter can be set to do
this for more than one level of detail. It also includes an over-

New & Used

Bill Todd is President of The Database Group, Inc., a Phoenix area consulting and
development company. He is co-author of Delphi: A Developer’s Guide [M&T
Books, 1995], Creating Paradox for Windows Applications [New Riders
Publishing, 1994], and Paradox for Windows Power Programming [QUE, 1995];
Technical Editor of Paradox Informant; a member of Team Borland; and a speaker
at every Borland database conference. He can be reached at (602) 802-0178, or
on CompuServe at 71333,2146.

Ace Reporter from SCT Associates, Inc. is
a band-oriented report writer, written in
and for Delphi. To begin designing a
report, just drop a DataSet, DataSource
and SctReport component on a form. In
addition, Ace Reporter has an excellent
suite of tools to enhance a report’s
appearance that allows developers to
add horizontal and vertical lines, boxes,
and other shapes. Ace Reporter also
allows you to include subtotals, running
totals, final totals, minimum and maxi-
mum values, averages, sums, and
counts on your reports. Highly recom-
mended.

SCT Associates, Inc.
9221 South Kilpatrick Ave.
Oak Lawn, IL 60453-1813
Phone: (708) 425-0205
Fax: (708) 422-3877
E-Mail: CIS: 73766,1224
Web Site: http://ourworld.compu-
serve.com/homepages/sct
Price: US$245
lay band that allows you to print anything anywhere on the
page. This is handy for doing preprinted, form style reports,
or watermark background graphics.

Ace Reporter features a full suite of events that you can
attach code to for custom computations, as well as run
reports from arrays or any other source that’s not a data-
base table.

For example, each band has an OnPrintWhen event that is
triggered each time the band is about to print. The event
handler returns True or False to control whether the band
prints. The OnDataFilter event lets you write code that
examines each record and determine if it should be includ-
ed in the report.

In addition to sending reports to the screen or printer, you
can also send a report to a file. This is particularly useful
because you can send a report to a file in Rich Text
Format (.RTF). This enables you to send a report to a file
with its fonts and formatting preserved, and users can
import the report into a word processor or e-mail message
without altering its appearance.

Drawbacks
About the only feature that’s missing from Ace Reporter is
the option to automatically suppress printing blank lines
in a band or within a container. This is not a major prob-
lem. It just means you must format addresses or other text
in code to drop blank lines. I do this often, and some
report writers I’ve used include this feature, so I miss it.

The only complaint I have about Ace Reporter is the docu-
mentation. The manual is a scant 20 pages, and less than
helpful. For example, on page 7 in the section on creating
your first report you will find:

On the newly created form, you will drop a Dataset
component, a TDataSet component, and a TSCTReport
component. You should then set the DataSet property
of the DataSource to point to the Dataset you just
dropped.

What DataSource?

Fortunately there is a good tutorial on disk in Microsoft
Word for Windows format to help get you going, as well as
an adequate online Help system. Take the time to work
through the tutorial. It will answer a lot of questions and
show you how to do many things not covered in the manual.

Ace Reporter also ships with a demonstration program that
shows a wide variety of reports.
49 August 1996 Delphi Informant
Running the demonstration
file provides a good intro-
duction to the power and
flexibility of Ace Reporter, as
well as the code to learn
exactly how a specific report
is done.

Ace Reporter includes both
16- and 32-bit versions, so
maintaining a common code
base for both environments
or converting an application
from 16- to 32-bit is easy.

Conclusion
Learning to use Ace
Reporter is one of the best
time investments I’ve
made. This is a great prod-
uct. It’s not only powerful,
but the Fast button’s fea-
tures allow you to create
reports in record time.

With Ace Reporter I can cre-
ate almost any report my

clients want with none of the problems I have had with
ReportSmith or Crystal Reports.

There are no DLLs or other external files to distribute.
Everything is in your application’s .EXE. The only connec-
tion to the database is the one opened by your Delphi pro-
gram — and printing reports is fast. I ran a complex 115-
page report that included a grid between each row and col-
umn on my Pentium 100MHz notebook in 20 seconds.

If you want fast, flexible, and completely integrated reporting
for your Delphi applications, try Ace Reporter.

There is a demonstration version in the file ACETRIAL.EXE
on SCT Associates’ Web page at http://ourworld.com-
puserve.com/homepages/sct. ∆

File | New
Directions / Commentary

Java Changes Everything
In the past year, Delphi picked up two formidable competitors: Optima++ and Java. They represent
two modes of change occurring in the development tools arena — one evolutionary, one revolu-

tionary. Let’s examine these changes and their implications for you as a Delphi developer.
Evolutionary Changes. Before
1996, most change within the visual
tools market was the result of an
evolutionary process. The first phase
began in the early 1990s when
Visual Basic and PowerBuilder
emerged as clear leaders in this area.
Their respective languages weren’t
necessarily robust, but they became
corporate standards because they
were “good enough” to get the job
done quickly.

Delphi’s entry into this market last
year introduced a second evolution-
ary step. Delphi’s technological edge
was so striking that the two domi-
nant 4GLs were no longer consid-
ered untouchable. The recent release
of Optima++ only re-inforces the
trend to add true object orientation
and optimized code compiler tech-
nology to this maturing marketplace.

Revolutionary Changes. As neat and
tidy as this evolutionary process has
been, one technology trend has
emerged that throws the whole mar-
ket up for grabs: the Web and its pro-
gramming wunderkind, Java. The
frenzy for Web tools — and paranoia
over the Java hype — has undoubted-
ly kept product teams from all ven-
dors working late nights “Web-
enabling” their products. Borland’s
Delphi 2 Internet/Intranet Update is
such an example.

But if “Web-enablement” was all we
were talking about, we could call the
Web craze just another evolutionary
step. What is truly radical about the
50 August 1996 Delphi Informant
Web is that it re-adjusts our think-
ing about application development.
The premise in the 1990s was
always a client-side application
working with server-side data. But
Web proponents are discussing a far
different “recentralized” model. Java
is a principle means of doing just
that. If such a model were to suc-
ceed in toto, then the client-side
programs we are currently creating
would be effectively replaced by Java
applets housed on a server.

I Don’t Think So. Undoubtedly, the
Web offers a compelling solution for
many problems not solvable by stan-
dard client/server approaches (see
“File | New” in the April ’96 DI).
But a complete “recentralization”
revolution will never occur. The
whole notion is based on a false
premise, best typified in Sun’s well-
known phrase: “The network is the
computer.” As I have previously dis-
cussed on this page (in the July ’96
DI), this vision runs counter to all
our experience in the software world.

Java will not render Delphi,
Optima++, or other tools obsolete,
but its importance in the market-
place can hardly be underestimated.
Java will find many practical uses in
the server-based paradigm, but the
language will surely go beyond the
Web and be used for developing
native Windows .EXEs as well. In
spite of the endless hype, I am con-
vinced that Java will survive as a lan-
guage, regardless of the winner of the
Microsoft vs. Sun/Netscape wars.
More Tools. The Web revolution has
caused the visual tools market to
broaden in scope more than ever
before, with the distinctions between
Web development and client/server
tools fading daily. During the evolu-
tionary phases, a developer could get
away with concentrating on a single
tool, be it Visual Basic, C++, Delphi,
or whatever. This practice is not so
simple today; the world of client/server
computing continues to encompass an
ever increasing number of technologies:
Internet/intranet architecture, Web
database access, distributed objects, and
“active” Web content. Within this con-
text, we as developers will need to use
multiple tools to provide sound solu-
tions in the marketplace. Delphi will
be among those tools. So will Java.

Next month, we’ll look at how you
can use Delphi to create Web appli-
cations. ∆

— Richard Wagner

Surfing the Web? If so, visit the “File
| New” home page at http://www.aca-
dians.com/filenew/filenew.htm. In
addition to downloading past articles,
you can get the latest tips and infor-
mation from the world of software
development.

Richard Wagner is Contributing Editor
to Delphi Informant and Chief
Technology Officer of Acadia Software in
the Boston, MA area. He welcomes your
comments at rwagner@acadians.com
or on the “File | New” home page
(see above).

	Table of Contents
	Delphi Tools
	Digital Metaphors Releases Piparti 1.0 Report VCL for Delphi
	Eagle Research Links Delphi 2 to Access with JETset
	New Import/Export Tool
	Tamarack Announces Version 2.0 of TtaDBMRO for Delphi
	ImageFX Introduces FXTools 4.0 Professional Edition
	MKS Source Integrity 7.2 Released, Adds Web Functionality

	Leveraging ReportSmith: Part I
	The New ReportSmith API
	Using ReportSmith with Delphi
	Creating the Delphi Application
	An Example Delphi Application
	Until Next Month ...

	QuickReport
	A QuickReport Overview
	Creating a Simple Report Example
	Previewing a Design Time QuickReport
	Using a QuickReport at Run Time
	Previewing and Printing a QuickReport Report
	Using Data Modules with QuickReport
	Components Used in QuickReport
	Using QRBands
	Creating a Multi-Band Report
	Conclusion

	ReportSmith Secrets
	Secret 1: Make Sure You’ve Got the Horsepower
	Secret 2: Draft and Presentation
	Secret 3: Column Editing and Form (Field) Editing
	Secret 4: Don’t Push the Done Button Unless You Are
	Secret 5: It’s Not Where You Go, It’s the Named Connections
	Conclusion

	Delphi Finger
	DelphiFinger
	The Windows Sockets Library
	Getting Started
	Searching for the Host Address
	Locating the Finger Server
	Making the Call
	There Can Be Only One
	Which Is Which?
	Making the Connection
	Hangin’ on the Telephone
	Closing the Connection
	Conclusion
	Begin Listing One — WINSOCK.PAS

	Completing the Component
	Graphical Editing
	Putting It in Place
	A Little Help
	Help Screens
	TLabelEffect Help
	Some Detective Work
	The Help Project File
	Compiling the Help File
	Conclusion

	Table Documentor: Act 32
	Let’s Get Started
	Distinguishing Code
	A Component Error
	The Table Documentor Program
	Enhancements

	TextFile
	An Insider Look at Delphi’s Roots
	One of the Best Gets Better

	Ace Reporter
	Getting Started
	Running the Report
	The Feature Set
	Building on Delphi’s Capabilities
	Aggregates without Aggravation
	Express Yourself
	The Devil’s in the Details
	Drawbacks
	Conclusion

	Java Changes Everything

